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Disclaimer

● This is an opinionated review/perspective talk, so you will see a decent 
chunk of my and my collaborators’ works
○ Apologies for this!    
○ Thank you to all who have/continue to inspire me to work on JSDMs
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Multivariate abundance data



4

Multivariate abundance data

● Some common features:
○ Multiple correlated responses 

(high-dimensional)
○ Non-continuous responses 

with evident mean-variance 
relationship

○ Non-linear Y-X relationships
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Question/s of interests

● Depends on the data you have:
○ (a) is a multivariate prediction 

problem
○ (b) -> how is Y and X related?
○ (c) -> how are the columns of 

Y related?
○ (d) + (e) -> how do T & C 

mediate/drive the Y-X 
relationship?
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Enter the joint species distribution model

● Loosely speaking, a joint species distribution model (JSDM) refers to a statistical 
method that simultaneously models all species
○ Accounts for the fact that species may be correlated with each other (after adjusting 

for measured predictor)
○ A single, potentially high-dimensional log-likelihood function
○ The sources of this (residual) correlation could be many…
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Enter the joint species distribution model

● Loosely speaking, a joint species distribution model (JSDM) refers to a statistical 
method that simultaneously models all species
○ Accounts for the fact that species may be correlated with each other (after adjusting 

for measured predictor)
○ A single, potentially high-dimensional log-likelihood function
○ The sources of this (residual) correlation could be many…

● JSDMs are basically a counterpart to stacked species distribution models 
(SSDMs), which model each species separately
○ Log-likelihood function comprises the sum of independent species contributions e.g., 

fit a GLM/GAM/GLMM/ML etc…to each species 
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Enter the joint species distribution model

● A Google Scholar search of four key JSDM 
phrases (as of 23 November 2022)

○ Joint species distribution models
○ Model-based ordination
○ Joint dynamic species distribution 

models
○ Hierarchical modeling of species 

communities

● This is probably an underestimate of 
JSDM’s rise…
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Enter the joint species distribution model

● A Google Scholar search of four key JSDM 
phrases (as of 8 October 2022)

○ Joint species distribution models
○ Model-based ordination
○ Joint dynamic species distribution 

models
○ Hierarchical modeling of species 

communities

● This is probably an underestimate of 
JSDM’s rise…
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Gen 1: MGLMMs

● Multivariate generalized linear mixed model (MGLMM)
○ Model residual between-species correlations using a multivariate random intercept
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Gen 1: MGLMMs

● Multivariate generalized linear mixed model (MGLMM)
○ Model residual between-species correlations using a multivariate random intercept
○ Exponential family is being used “loosely” here to cover many response distributions
○ Pretty flexible (at least for correlations/symmetric associations)
○ Number of parameters scale as m2, so great if m is not large (compared to N)
○ Lots of random effects, scaling as Nm
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Gen 1: MGLMMs

● Multivariate generalized linear mixed model (MGLMM)
○ Model residual between-species correlations using a multivariate random intercept
○ Exponential family is being used “loosely” here to cover many response distributions
○ Pretty flexible (at least for correlations/symmetric associations)
○ Number of parameters scale as m2, so great if m is not large (compared to N)
○ Lots of random effects, scaling as Nm 

 

● Largely overtaken by Gen 2 JSDMs, but advances continue to be made…
○ Translating ideas from sparse graphical model/network/ML literature 
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Gen 2: Latent variable/factor analytic models

● Generalized linear latent variable models (LVMs)
○ Model residual between-species correlations using rank-reduction 
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Gen 2: Latent variable/factor analytic models

● Generalized linear latent variable models (LVMs)
○ Model residual between-species correlations using rank-reduction
○ Less flexible than MGLMMs, but probably good enough in most scenarios?
○ Number of parameters scales as m, so can handle (a lot) more species
○ Less random effects than MGLMMs, scaling as Nd
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Gen 2: Latent variable/factor analytic models

● Generalized linear latent variable models (LVMs)
○ Model residual between-species correlations using rank-reduction

● LVMs are not new news! Examples include psychometrics, agriculture (MET)
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Gen 2: Latent variable/factor analytic models

● LVMs are not new news, but they took off in ecology!
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Gen 2: Latent variable/factor analytic models
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○ Model-based unconstrained/partial/concurrent ordination, when d is small
○ Latent variables interpreted as unobserved environmental predictors

■ Neat interpretation but practically not very useful
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Gen 2: Latent variable/factor analytic models

● LVMs are not new news, but they took off in ecology!
○ Model-based unconstrained/partial/concurrent ordination, when d is small
○ Latent variables interpreted as unobserved environmental predictors

■ Neat interpretation but practically not very useful

○ Rank-reduction concept used in other community ecology contexts
■ Vector autoregressive models; community-level drivers/regulators
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Gen 2+: LVMs with all the extras 

● Current JSDM paradigm
○ Make LVMs more flexible and/or computationally more scalable
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Gen 2+: LVMs with all the extras

● Example 1: Spatio-temporal LVMs
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Gen 2+: LVMs with all the extras 

● Example 1: Spatio-temporal LVMs
○ Many flavours e.g., tensor-product or additive LVs, dynamic loadings  
○ Faster approximations/algorithms e.g., LVs + SPDE/NNGP/GPP
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Gen 2+: LVMs with all the extras 

● Example 2: Borrow strength across species
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Gen 2+: LVMs with all the extras 

● Example 2: Borrow strength across species
○ Traits mediate species mean responses to environment (“fourth-corner” models)
○ Phylogeny drives (dis)similarity in response to environment (phylogenetic LVMs)
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Gen 2+: LVMs with all the extras 

● Example 3: Borrow strength across species (in the loadings)
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Gen 2+: LVMs with all the extras 

● Example 3: Borrow strength across species (in the loadings)
○ Clustering process on the loadings matrix (archetypal species associations)
○ Regress loadings against measured covariates (environment dependent associations)
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Gen 2+: LVMs with all the extras 

● There are many other extensions of LVMs, which I do not be cover/know about!



Some closing remarks/thoughts
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Some closing remarks/thoughts 

● JSDMs is a success story of how to translate and sell statistics…
○ Targeted software + relevant interpretations/answers + methods-vs-maths gap 
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Some closing remarks/thoughts 

● JSDMs is a success story of how to translate and sell statistics…
○ Targeted software + relevant interpretations/answers + methods-vs-maths gap

 

● Still many gaps in the JSDMs literature to close. Personal examples include:
○ Directional associations (structural equation modeling)?
○ Where do machine learning techniques come into this?
○ Data integration/fusion in JSDMs
○ Gen 3: Replacing latent variables with (spatio-temporal) basis functions

■ https://github.com/fhui28/CBFM
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Some closing remarks/thoughts 

● JSDMs is a success story of how to translate and sell statistics…
○ Targeted software + relevant interpretations/answers + methods-vs-maths gap

 

● Still many gaps in the JSDMs literature to close. Personal examples include:
○ Directional associations (structural equation modeling)?
○ Where do machine learning techniques come into this?
○ Data integration/fusion in JSDMs
○ Gen 3: Replacing latent variables with (spatio-temporal) basis functions

■ https://github.com/fhui28/CBFM

● JSDMs is not the be-all and end-all
○ E.g., Stacked SDMs are still a powerful statistical approach
○ Do not throw the kitchen sink at something that does not need it



Any questions?

◉ francis.hui@anu.edu.au  
◉ https://francishui.netlify.app/ 

Thank you for listening!
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Multivariate abundance data

● Some common features:
○ Multiple correlated responses 

(high-dimensional)
○ Non-continuous responses 

with evident mean-variance 
relationship

○ Non-linear Y-X relationships

 

● Other features:
○ Spatio-temporal 

(high-volume)
○ Multiple data sources
○ Background information
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Question/s of interests

● Depends on the data you have:
○ (a) is a multivariate prediction 

problem
○ (b) -> how is Y and X related?
○ (c) -> how are the columns of 

Y related?
○ (d) + (e) -> how do T & C 

mediate/drive the Y-X 
relationship?

● Some other applications:
○ Model-based ordination
○ Bioregionalization
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Gen 2: Latent variable/factor analytic models

● Generalized linear latent variable models (LVMs)
○ Model residual between-response correlations using rank-reduction
○ Less flexible than MGLMMs, but probably good enough in most scenarios?*
○ Number of parameters scales as m, so can handle (a lot) more species*
○ Less random effects than MGLMMs, scaling as Nd; still quite challenging to fit**

■ *Choice of d remains a complicated and active topic
■ **Lots of work has been done in this space

* **
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Gen 2: Latent variable/factor analytic models

● Generalized linear latent variable models (LVMs)
○ Model residual between-species correlations using rank-reduction

● LVMs are not new news! Examples include psychometrics
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Gen 2: Latent variable/factor analytic models

● LVMs are not new news, but they took off in ecology!
○  Model-based unconstrained and partial ordination, when d is small
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Gen 3: ??? 

● Latent variables as an approach to JSDMs is awesome
○ But I think we are pushing the limits of their scalability/computability? 
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Gen 3: ??? 

● Latent variables as an approach to JSDMs is awesome
○ But I think we are pushing the limits of their scalability/computability? 

● Move the randomness from units to species -> basis functions
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Gen 3: CBFMs? 

● Community-level basis function models (CBFMs) for spatio-temporal multivariate 
abundance data 
○ Pre-defined spatio-temporal basis functions 
○ https://github.com/fhui28/CBFM 
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Gen 3: CBFMs? 

● But why would CBFMs be faster?
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Gen 3: CBFMs? 

● But why would CBFMs be faster?
○ Although m may not be small, N is still larger in most modern datasets
○ It is just a big generalized additive model (GAM)! 
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Gen 3: CBFMs? 

● Basis functions are not new news
○ GAMs have been known in ecology for a long time. But not so much fixed rank kriging
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● Is Gen 3 ⊂ Gen2+? Isn’t basis functions just an approximation of spatio-temporal 
LVMs?
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Gen 3: CBFMs? 

● Basis functions are not new news
○ GAMs have been known in ecology for a long time. But not so much fixed rank kriging
○ It takes a while to translate statistical methods to other disciplines (properly)…

 

● Is Gen 3 ⊂ Gen2+? Isn’t basis functions just an approximation of spatio-temporal 
LVMs?
○ Depends on how you want to approach basis functions: “one person’s mean is 

another person’s covariance” (Cressie, 1993)
○ A “basis function” mindset can opens up new opportunities
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Estimation, inference and all that jazz 

● CBFM = Leveled up FRK = A very big generalized additive model (GAM) 
○ Penalized quasi-likelihood (PQL) estimation for all coefficients, dispersion parameters; 

amenable to parallelization
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Multivariate abundance data

● NorthEast Fisheries Science Center (NEFSC) fall bottom trawl survey
○ https://www.fisheries.noaa.gov/inport/item/22560
○ Subset of 2000-2019 



54

Multivariate abundance data

● Four example covariates in fall 
bottom trawl survey:
○ There are more covariates (between 

20-30)...
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Multivariate abundance data

● Eight example demersal fish species 
in fall bottom trawl survey
○ Around 150ish taxa in total
○ High-dimensional, correlated 

responses
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Multivariate abundance data

● Eight example demersal fish species 
in fall bottom trawl survey
○ Around 150ish taxa in total
○ High-dimensional, correlated 

responses

● Some other noteworthy points:
○ You never visit the same location 

more than once 
○ About 6,000 space-time locations 

visited between 2000-2019



57

Multivariate abundance data

● Responses are:
○ Sparse, non-continuous 
○ Strong mean-variance relationship (various reasons behind this)
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Estimation, inference and all that jazz

● CBFM = Leveled up FRK = A very big generalized additive model (GAM) 
○ Penalized quasi-likelihood (PQL) estimation for all coefficients, dispersion parameters; 

amenable to parallelization
○ Maximum restricted Laplace-approximated likelihood estimation for the loadings and 

nugget effects
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Estimation, inference and all that jazz

● CBFM = Leveled up FRK = A very big generalized additive model (GAM) 
○ Penalized quasi-likelihood (PQL) estimation for all coefficients, dispersion parameters; 

amenable to parallelization
○ Maximum restricted Laplace-approximated likelihood estimation for the loadings and 

nugget effects
○ Approximate large sample distributions for coefficients/linear predictors etc...
○ Adapt GAM tools for residual analysis, model selection, prediction etc…; 

variance-partitioning; space-time ordination using SVD-type ideas, and so on


