The rise and rise of joint species distribution models (JSDMs) in ecology

Francis K.C. Hui Australian National University

Multivariate abundance data

Gen 1: MGLMM

Gen 2: Latent variables/factor analysis

Gen 2+: LVMs with all the extras

Closing thoughts

Some images courtesy of SlidesCarnival and Google images AASC 2022

Disclaimer

- This is an opinionated review/perspective talk, so you will see a decent chunk of my and my collaborators' works
 - Apologies for this!
 - Thank you to all who have/continue to inspire me to work on JSDMs

Multivariate abundance data

ECOLOGY LETTERS

Idea and Perspective 🕆 Open Access 💿 🕥

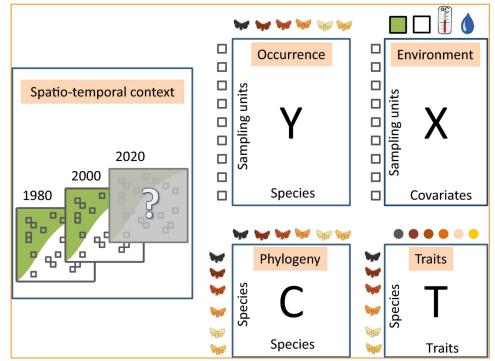
How to make more out of community data? A conceptual framework and its implementation as models and software

Otso Ovaskainen 🔀 Gleb Tikhonov, Anna Norberg, F. Guillaume Blanchet, Leo Duan, David Dunson, Tomas Roslin, Nerea Abrego Pages 561-576

Volume 20, Issue 5 May 2017

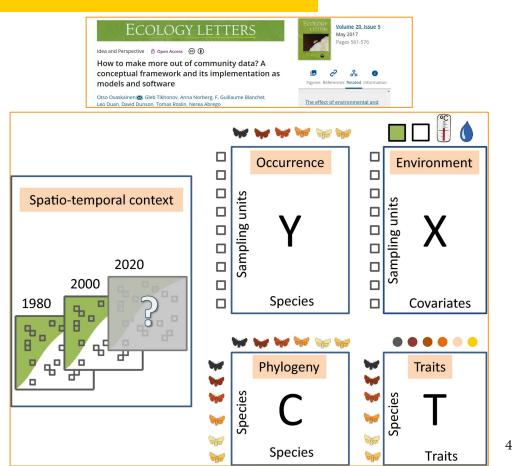
3

The effect of environmental and



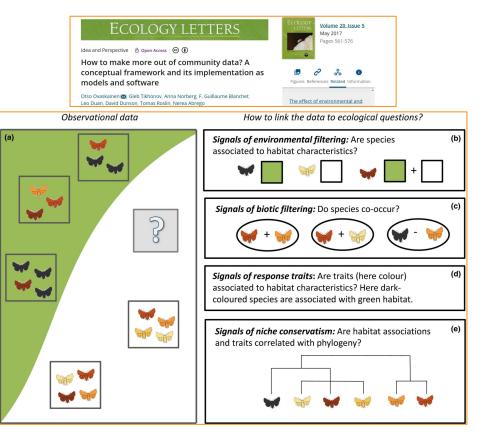
Multivariate abundance data

- Some common features:
 - Multiple correlated responses (high-dimensional)
 - Non-continuous responses with evident mean-variance relationship
 - Non-linear Y-X relationships



Question/s of interests

- Depends on the data you have:
 - (a) is a multivariate prediction problem
 - (b) -> how is Y and X related?
 - (c) -> how are the columns of Y related?
 - (d) + (e) -> how do T & C mediate/drive the Y-X relationship?

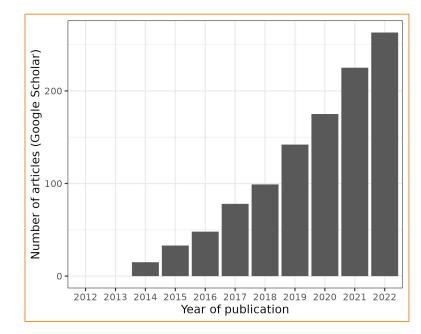


- Loosely speaking, a joint species distribution model (JSDM) refers to a statistical method that simultaneously models all species
 - Accounts for the fact that species may be correlated with each other (after adjusting for measured predictor)
 - A single, potentially high-dimensional log-likelihood function
 - The sources of this (residual) correlation could be many...

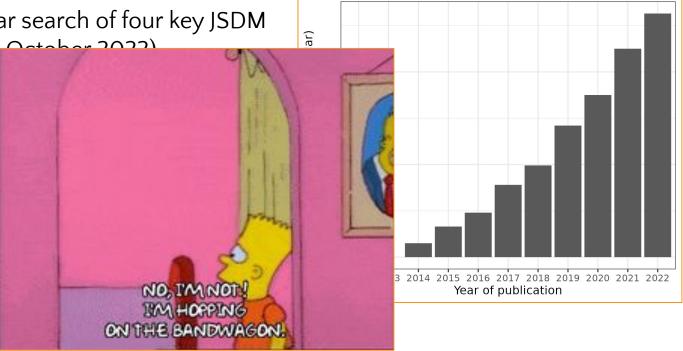
Trends in Ecology & Evolution	Recc
CellP	The T
Volume 36, Issue 5, May 2021, Pages 391-401	Trends i
Opinion	A Gla
On the Interpretations of Joint	Trends i
Modeling in Community Ecology	📆 Pur
Wodeling in Community Leology	Do Re
Giovanni Poggiato ^{1, 2} & @ 🗷, Tamara Münkemüller ¹ , Daria Bystrova ^{1, 2, @} , Julyan Arbel ^{2, @} ,	Trends i
James S. Clark ^{3, 4, 5} , Wilfried Thuiller ¹	📆 Pur
Show more 🤝	
+ Add to Mendeley 55 Cite	Artic
https://doi.org/10.1016/j.tree.2021.01.002 Get rights and content	
	Citatio

- Loosely speaking, a joint species distribution model (JSDM) refers to a statistical method that simultaneously models all species
 - Accounts for the fact that species may be correlated with each other (after adjusting for measured predictor)
 - A single, potentially high-dimensional log-likelihood function
 - The sources of this (residual) correlation could be many...
- JSDMs are basically a counterpart to stacked species distribution models (SSDMs), which model each species separately
 - Log-likelihood function comprises the sum of independent species contributions e.g., fit a GLM/GAM/GLMM/ML etc...to each species

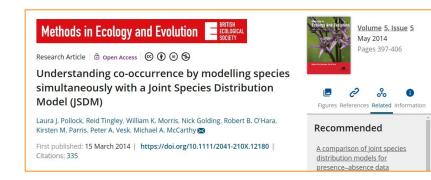
- A Google Scholar search of four key JSDM phrases (as of 23 November 2022)
 - Joint species distribution models
 - Model-based ordination
 - Joint dynamic species distribution models
 - Hierarchical modeling of species communities
- This is probably an underestimate of JSDM's rise...



- A Google Scholar search of four key JSDM ${\bullet}$ phrases (as of 8 October 2022)
 - Joint spec Ο
 - Model-base 0
 - Joint dyna Ο models
 - Hierarchic 0 communitie
- This is probably JSDM's rise...



- Multivariate generalized linear mixed model (MGLMM)
 - Model residual between-species correlations using a multivariate random intercept



- Multivariate generalized linear mixed model (MGLMM)
 - Model residual between-species correlations using a multivariate random intercept
 - Exponential family is being used "loosely" here to cover many response distributions

Consider a set of species j = 1, ..., m recorded at a set of observational units i = 1, ..., N, along with measured covariates x_i . Then a vanilla JSDM is defined as

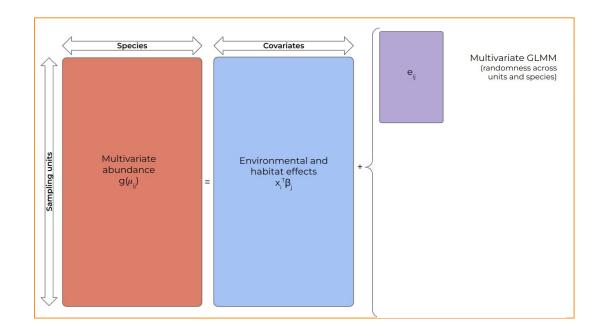
$$g(\mu_{ij}) = \eta_{ij} = \boldsymbol{x}_i^\top \boldsymbol{\beta}_j + e_{ij}$$

$$[\boldsymbol{e}_i] = \mathcal{N}(\boldsymbol{0}, \boldsymbol{\Sigma})$$

$$[y_{ij}|\boldsymbol{e}_i] = \mathsf{Exp-Fam}(\mu_{ij}, \boldsymbol{\phi}_j)$$

$$\ell(\boldsymbol{\Psi}) = \sum_{i=1}^N \log\left(\int \prod_{j=1}^m f(y_{ij}|\mu_{ij}, \boldsymbol{\phi}_j) f(\boldsymbol{e}_i) \, d\boldsymbol{e}_i\right)$$

- Multivariate generalized linear mixed model (MGLMM)
 - Model residual between-species correlations using a multivariate random intercept
 - Exponential family is being used "loosely" here to cover many response distributions



- Multivariate generalized linear mixed model (MGLMM)
 - Model residual between-species correlations using a multivariate random intercept
 - Exponential family is being used "loosely" here to cover many response distributions
 - Pretty flexible (at least for correlations/symmetric associations)
 - Number of parameters scale as m², so great if m is not large (compared to N)
 - Lots of random effects, scaling as Nm

Consider a set of species j = 1, ..., m recorded at a set of observational units i = 1, ..., N, along with measured covariates x_i . Then a vanilla JSDM is defined as

$$g(\mu_{ij}) = \eta_{ij} = \boldsymbol{x}_i^{\top} \boldsymbol{\beta}_j + e_{ij}$$

$$[\boldsymbol{e}_i] = \mathcal{N}(\boldsymbol{0}, \boldsymbol{\Sigma})$$

$$[y_{ij}|\boldsymbol{e}_i] = \mathsf{Exp-Fam}(\mu_{ij}, \boldsymbol{\phi}_j)$$

$$\ell(\boldsymbol{\Psi}) = \sum_{i=1}^N \log\left(\int \prod_{j=1}^m f(y_{ij}|\mu_{ij}, \boldsymbol{\phi}_j) f(\boldsymbol{e}_i) \, d\boldsymbol{e}_i\right)$$

- Multivariate generalized linear mixed model (MGLMM)
 - Model residual between-species correlations using a multivariate random intercept
 - Exponential family is being used "loosely" here to cover many response distributions
 - Pretty flexible (at least for correlations/symmetric associations)
 - Number of parameters scale as m², so great if m is not large (compared to N)
 - Lots of random effects, scaling as Nm
- Largely overtaken by Gen 2 JSDMs, but advances continue to be made...
 - Translating ideas from sparse graphical model/network/ML literature

- Generalized linear latent variable models (LVMs)
 - Model residual between-species correlations using rank-reduction

Volume 30, Issue 12, December 2015, Pages 766-779

So Many Variables: Joint Modeling in Community Ecology

David I. Warton 1 A \boxtimes , F. Guillaume Blanchet 2 , Robert B. O'Hara 3 , Otso Ovaskainen 4,5 , Sara Taskinen 6 , Steven C. Walker 2 , Francis K.C. Hui 7

Show more 🗸

+ Add to Mendeley 55 Cite

https://doi.org/10.1016/j.tree.2015.09.007

Get rights and content

Published: 24 August 2017

Generalized Linear Latent Variable Models for Multivariate Count and Biomass Data in Ecology

Jenni Niku 🖂, David I. Warton, Francis K. C. Hui & Sara Taskinen

Journal of Agricultural, Biological and Environmental Statistics 22, 498–522 (2017) | Cite this article

2453 Accesses | 28 Citations | 1 Altmetric | Metrics

Methods in Ecology and Evolution Ecological

Research Article 🕺 Free Access

Generating realistic assemblages with a joint species distribution model

David J. Harris 🔀

First published: 05 January 2015 | https://doi.org/10.1111/2041-210X.12332 | Citations: 80

Volume 6, Issue 4 April 2015 Pages 465-473

Defining and evaluating

- Generalized linear latent variable models (LVMs)
 - Model residual between-species correlations using rank-reduction

Consider a set of species j = 1, ..., m recorded at a set of observational units i = 1, ..., N, along with covariates x_i . Then a (basic) LVM is defined as

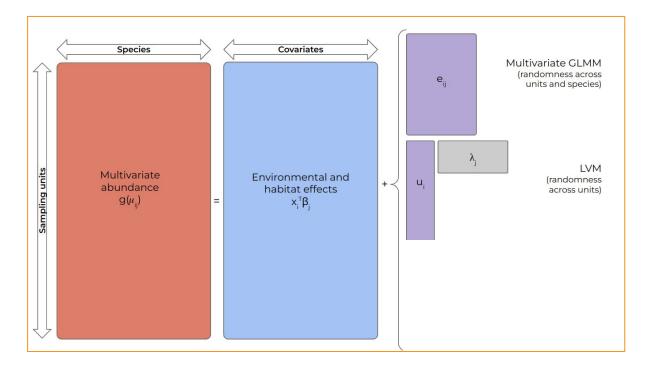
$$g(\mu_{ij}) = \eta_{ij} = \boldsymbol{x}_i^{\top} \boldsymbol{\beta}_j + \boldsymbol{u}_i^{\top} \boldsymbol{\lambda}_j$$

$$[\boldsymbol{u}_i] = \mathcal{N}(\boldsymbol{0}, \boldsymbol{I}_d); \ d \ll m$$

$$[y_{ij} | \boldsymbol{u}_i] = \mathsf{Exp-Fam}(\mu_{ij}, \boldsymbol{\phi}_j); \ \mathsf{Cov}(\eta_{ij}, \eta_{ij'}) = \boldsymbol{\lambda}_j^{\top} \boldsymbol{\lambda}_{j'}$$

$$\ell(\boldsymbol{\Psi}) = \sum_{i=1}^N \log\left(\int \prod_{j=1}^m f(y_{ij} | \mu_{ij}, \boldsymbol{\phi}_j) f(\boldsymbol{u}_i) \, d\boldsymbol{u}_i\right)$$

- Generalized linear latent variable models (LVMs)
 - Model residual between-species correlations using rank-reduction



- Generalized linear latent variable models (LVMs)
 - Model residual between-species correlations using rank-reduction
 - Less flexible than MGLMMs, but probably good enough in most scenarios?
 - Number of parameters scales as m, so can handle (a lot) more species
 - Less random effects than MGLMMs, scaling as Nd

Consider a set of species j = 1, ..., m recorded at a set of observational units i = 1, ..., N, along with covariates x_i . Then a (basic) LVM is defined as

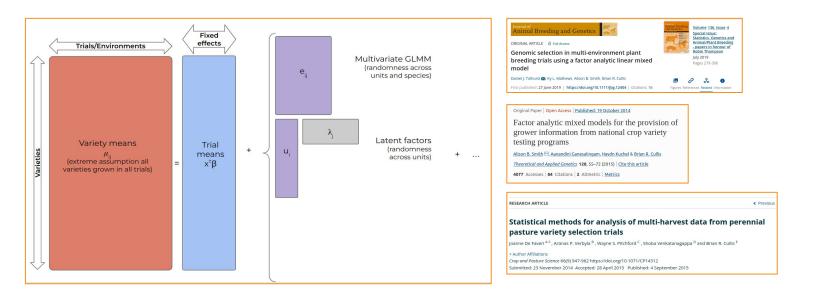
$$g(\mu_{ij}) = \eta_{ij} = \boldsymbol{x}_i^{\top} \boldsymbol{\beta}_j + \boldsymbol{u}_i^{\top} \boldsymbol{\lambda}_j$$

$$[\boldsymbol{u}_i] = \mathcal{N}(\boldsymbol{0}, \boldsymbol{I}_d); \ d \ll m$$

$$[y_{ij} | \boldsymbol{u}_i] = \mathsf{Exp-Fam}(\mu_{ij}, \boldsymbol{\phi}_j); \ \mathsf{Cov}(\eta_{ij}, \eta_{ij'}) = \boldsymbol{\lambda}_j^{\top} \boldsymbol{\lambda}_{j'}$$

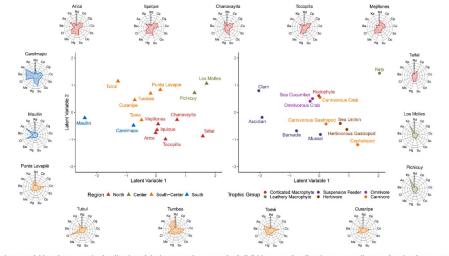
$$\ell(\boldsymbol{\Psi}) = \sum_{i=1}^N \log \left(\int \prod_{j=1}^m f(y_{ij} | \mu_{ij}, \boldsymbol{\phi}_j) f(\boldsymbol{u}_i) \, d\boldsymbol{u}_i \right)$$

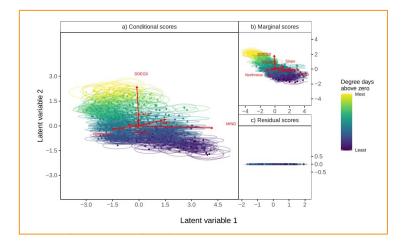
- Generalized linear latent variable models (LVMs)
 - Model residual between-species correlations using rank-reduction
- LVMs are not new news! Examples include psychometrics, agriculture (MET)



• LVMs are not new news, but they took off in ecology!

- LVMs are not new news, but they took off in ecology!
 - Model-based unconstrained/partial/concurrent ordination, when d is small



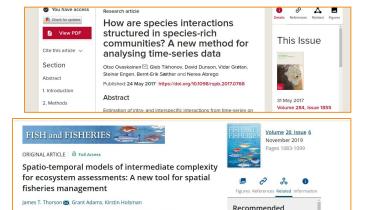


$$egin{aligned} g(\mu_{ij}) &= \eta_{ij} = oldsymbol{x}_i^ op oldsymbol{eta}_j + oldsymbol{z}_i^ op oldsymbol{\lambda}_j - rac{1}{2}oldsymbol{z}_j^ op oldsymbol{D}_joldsymbol{z}_i \ oldsymbol{z}_i &= oldsymbol{C}^ op oldsymbol{x}_{ ext{lv},i} + oldsymbol{u}_i \ [oldsymbol{u}_i] &= oldsymbol{N}(oldsymbol{0},oldsymbol{I}_d); \ d \ll m \ [oldsymbol{y}_{ij}|oldsymbol{u}_i] &= ext{Exp-Fam}(\mu_{ij},oldsymbol{\phi}_j) \end{aligned}$$

- LVMs are not new news, but they took off in ecology!
 - Model-based unconstrained/partial/concurrent ordination, when d is small
 - Latent variables interpreted as unobserved environmental predictors
 - Neat interpretation but practically not very useful

- LVMs are not new news, but they took off in ecology!
 - Model-based unconstrained/partial/concurrent ordination, when d is small
 - Latent variables interpreted as unobserved environmental predictors
 - Neat interpretation but practically not very useful
 - Rank-reduction concept used in other community ecology contexts
 - Vector autoregressive models; community-level drivers/regulators

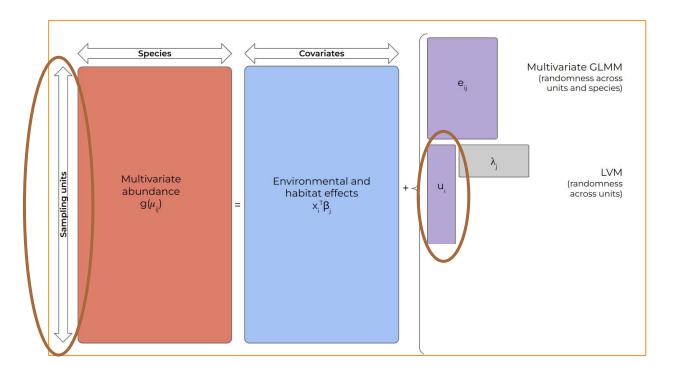
Species
$$j = 1, ..., m$$
 at time $t = 1, ..., T$
 $\log(\mu_{tj}) = \boldsymbol{x}_t^\top \boldsymbol{\beta}_j + (\boldsymbol{Q}\boldsymbol{c}_j + \boldsymbol{d}_j)^\top \log(\boldsymbol{\mu}_{t-1}) + \boldsymbol{u}_t^\top \boldsymbol{\lambda}_j + \delta_j$
 $\dim(\boldsymbol{Q}) = m \times q; \ \dim(\boldsymbol{c}_j) = q \times 1; \ q \ll m$
 $\boldsymbol{d}_j = (0, 0, ..., 0, d_j, 0, ..., 0)$
 $[\boldsymbol{u}_t] = \mathcal{N}(\boldsymbol{0}, \boldsymbol{I}_d); \ d \ll m$
 $[\delta_j] = \mathcal{N}(0, \sigma^2)$



First published: 25 September 2019 | https://doi.org/10.1111/faf.12398

- Current JSDM paradigm
 - Make LVMs more flexible and/or computationally more scalable

• <u>Example 1</u>: Spatio-temporal LVMs



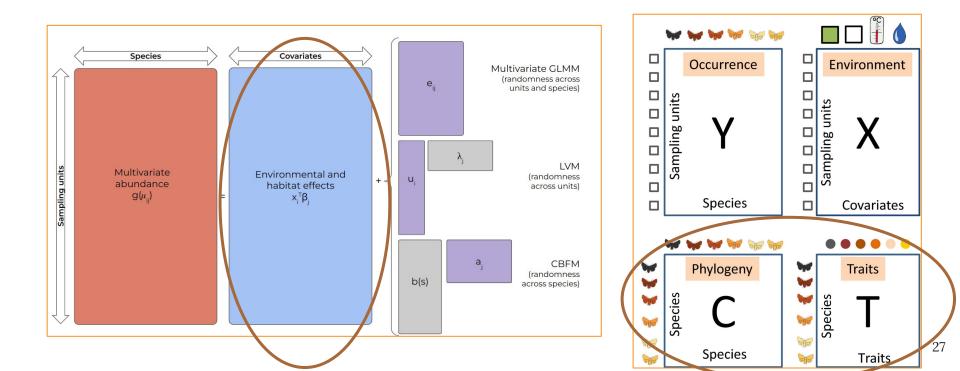
- <u>Example 1</u>: Spatio-temporal LVMs
 - Many flavours e.g., tensor-product or additive LVs, dynamic loadings
 - Faster approximations/algorithms e.g., LVs + SPDE/NNGP/GPP

Consider a set of species j = 1, ..., m recorded at a set of units i = 1, ..., N, each unit having a space-time coordinate (s_i, t_i) . Then a (basic) spatio-temporal LVM is defined as

$$g\{\mu_{j}(\boldsymbol{s}_{i},t_{i})\} = \eta_{j}(\boldsymbol{s}_{i},t_{i}) = \boldsymbol{x}(\boldsymbol{s}_{i},t_{i})^{\top}\boldsymbol{\beta}_{j} + \boldsymbol{u}(\boldsymbol{s}_{i},t_{i})^{\top}\boldsymbol{\lambda}_{j}$$
$$[\boldsymbol{u}_{.,k}] = [\{\boldsymbol{u}_{k}(\boldsymbol{s}_{1},t_{1}),\ldots,\boldsymbol{u}_{k}(\boldsymbol{s}_{N},t_{N})\}] = \mathcal{N}(0,\boldsymbol{\Sigma}_{k}^{sp}\otimes\boldsymbol{\Sigma}_{k}^{time}); \ \boldsymbol{\Sigma}_{k}^{sp} \Rightarrow \mathsf{Matern}(\boldsymbol{\theta}_{k}^{sp}),\boldsymbol{\Sigma}_{k}^{time} \Rightarrow \mathsf{Matern}(\boldsymbol{\theta}_{k}^{time}); k = 1,\ldots,d$$
$$[\boldsymbol{y}_{ij}|\boldsymbol{u}_{i}] = \mathsf{Exp-Fam}(\mu_{ij},\boldsymbol{\phi}_{j})$$
$$\ell(\boldsymbol{\Psi}) = \log\left(\int\prod_{i=1}^{N}\prod_{j=1}^{m}f(\boldsymbol{y}_{j}(\boldsymbol{s}_{i},t_{i})|\mu_{j}(\boldsymbol{s}_{i},t_{i}),\boldsymbol{\phi}_{j})\prod_{k=1}^{d}f(\boldsymbol{u}_{.,k})\prod_{k=1}^{d}d\boldsymbol{u}_{.,k}\right)$$

Note $\operatorname{Cov}\{\eta_j(\boldsymbol{s},t),\eta_{j'}(\boldsymbol{s}',t')\} = \sum_{k=1}^d \lambda_{jk} \sum_{k,ss'}^{sp} \sum_{k,tt'}^{time} \lambda_{j'k}.$

• <u>Example 2</u>: Borrow strength across species



- <u>Example 2</u>: Borrow strength across species
 - Traits mediate species mean responses to environment ("fourth-corner" models)
 - Phylogeny drives (dis)similarity in response to environment (phylogenetic LVMs)

Consider a set of species j = 1, ..., m recorded at a set of observational units i = 1, ..., N, along with a set of p covariates x_i , an $m \times t$ trait matrix T, and phylogenetic correlation matrix C. Then a (basic) hierarchical LVM is defined as

$$g(\mu_{ij}) = \eta_{ij} = \boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{\beta}_j + \boldsymbol{u}_i^{\mathsf{T}} \boldsymbol{\lambda}_j$$

$$[(\boldsymbol{\beta}_1, \dots, \boldsymbol{\beta}_m)] = \mathcal{N}\{ \mathsf{vec}(\boldsymbol{K}\boldsymbol{T}^{\mathsf{T}}), \boldsymbol{V} \otimes (\boldsymbol{\rho}\boldsymbol{C} + (1-\boldsymbol{\rho})\boldsymbol{I}_m) \}$$

$$\dim(\boldsymbol{K}) = p \times t; \ t < p; \ \dim(\boldsymbol{V}) = p \times p$$

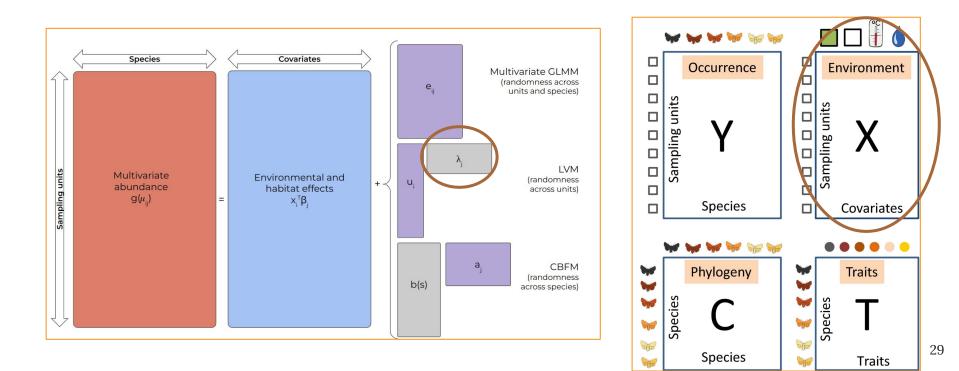
$$[\boldsymbol{u}_i] = \mathcal{N}(\boldsymbol{0}, \boldsymbol{I}_d); \ d \ll m$$

$$[y_{ij}|\boldsymbol{u}_i] = \mathsf{Exp}\operatorname{-}\mathsf{Fam}(\mu_{ij}, \boldsymbol{\phi}_j)$$

$$\ell(\boldsymbol{\Psi}) = \log\left(\int \prod_{i=1}^N \prod_{j=1}^m f(y_{ij}|\mu_{ij}, \boldsymbol{\phi}_j) \prod_{i=1}^N f(\boldsymbol{u}_i) \prod_{j=1}^m f(\boldsymbol{\beta}_j) \prod_{i=1}^N d\boldsymbol{u}_i \prod_{j=1}^m d\boldsymbol{\beta}_j \right)$$

Note $\operatorname{Cov}(\eta_{ij}, \eta_{i'j'}) = \rho C_{j,j'} \boldsymbol{x}_i^\top \boldsymbol{V} \boldsymbol{x}_{i'} + \boldsymbol{\lambda}_j^\top \boldsymbol{\lambda}_{j'}$ for $j \neq j'$.

• <u>Example 3</u>: Borrow strength across species (in the loadings)

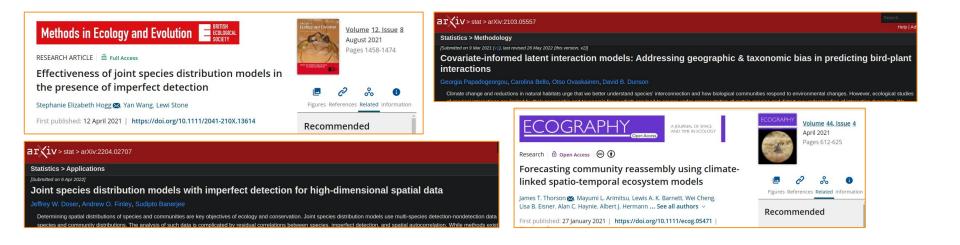


- <u>Example 3</u>: Borrow strength across species (in the loadings)
 - Clustering process on the loadings matrix (archetypal species associations)
 - Regress loadings against measured covariates (environment dependent associations)

Consider a set of species j = 1, ..., m recorded at a set of observational units i = 1, ..., N, along with covariates x_i . Then a (basic) loading-clustered LVM is defined as

$$\begin{split} g(\mu_{ij}) &= \eta_{ij} = \boldsymbol{x}_i^\top \boldsymbol{\beta}_j + \boldsymbol{u}_i^\top \boldsymbol{Z}^\top \boldsymbol{q}(\boldsymbol{k}_j) \\ \dim(\boldsymbol{Z}) &= r \times d; \ r \gg d; \ \dim\{\boldsymbol{q}(\boldsymbol{k}_j)\} = N \times 1 \\ [\boldsymbol{k}_j] &= \mathcal{DP}(\boldsymbol{\alpha}, \{1, 2, \dots, r\}); \\ [\boldsymbol{z}_{.l}] &= \mathcal{N}(\boldsymbol{0}, \boldsymbol{W}); \ l = 1, \dots, r \\ [\boldsymbol{u}_i] &= \mathcal{N}(\boldsymbol{0}, \boldsymbol{I}_d); \ d \ll m \\ [y_{ij} | \boldsymbol{u}_i] &= \mathsf{Exp-Fam}(\mu_{ij}, \boldsymbol{\phi}_j) \\ \ell(\boldsymbol{\Psi}) &= \mathsf{l've} \text{ never seen anyone try to estimate this using MLE!} \end{split}$$

• There are many other extensions of LVMs, which I do not be cover/know about!



- JSDMs is a success story of how to translate and sell statistics...
 - Targeted software + relevant interpretations/answers + methods-vs-maths gap

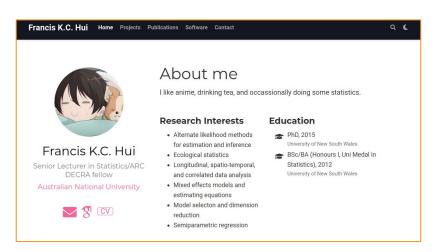
- JSDMs is a success story of how to translate and sell statistics...
 - Targeted software + relevant interpretations/answers + methods-vs-maths gap
- Still many gaps in the JSDMs literature to close. Personal examples include:
 - Directional associations (structural equation modeling)?
 - Where do machine learning techniques come into this?
 - Data integration/fusion in JSDMs
 - Gen 3: Replacing latent variables with (spatio-temporal) basis functions
 - https://github.com/fhui28/CBFM

- JSDMs is a success story of how to translate and sell statistics...
 - Targeted software + relevant interpretations/answers + methods-vs-maths gap
- Still many gaps in the JSDMs literature to close. Personal examples include:
 - Directional associations (structural equation modeling)?
 - Where do machine learning techniques come into this?
 - Data integration/fusion in JSDMs
 - Gen 3: Replacing latent variables with (spatio-temporal) basis functions
 - https://github.com/fhui28/CBFM
- JSDMs is not the be-all and end-all
 - E.g., Stacked SDMs are still a powerful statistical approach
 - Do not throw the kitchen sink at something that does not need it

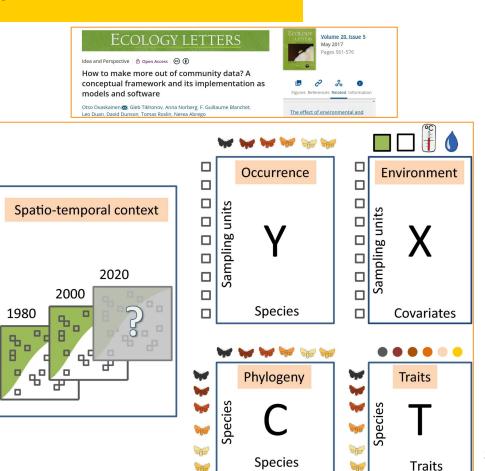
Thank you for listening!

Any questions?

- francis.hui@anu.edu.au
- https://francishui.netlify.app/



- Some common features:
 - Multiple correlated responses (high-dimensional)
 - Non-continuous responses with evident mean-variance relationship
 - Non-linear Y-X relationships
- Other features:
 - Spatio-temporal (high-volume)
 - Multiple data sources
 - Background information



Question/s of interests

- Depends on the data you have:
 - (a) is a multivariate prediction problem
 - (b) -> how is Y and X related?
 - (c) -> how are the columns of Y related?
 - (d) + (e) -> how do T & C mediate/drive the Y-X relationship?
- Some other applications:
 - Model-based ordination
 - Bioregionalization

JOURNAL ARTICLE EDITOR'S CHOICE

Bioregions in Marine Environments: Combining Biological and Environmental Data for Management and Scientific Understanding [∞] Skipton N C Woolley [∞], Scott D Foster, Nicholas J Bax, Jock C Currie, Daniel C Dunn, Cecilie Hansen, Nicole Hill, Timothy D O'Hara, Otso Ovaskainen, Roger Sayre ... Show more *BioScience*, Volume 70, Issue 1, January 2020, Pages 48–59,

https://doi.org/10.1093/biosci/biz133

Published: 18 December 2019

Trends in Ecology & Evolution

Volume 30, Issue 12, December 2015, Pages 766-779

Review

So Many Variables: Joint Modeling in Community Ecology

David I, Warton 1 A B, F. Guillaume Blanchet 2 , Robert B, O'Hara 3 , Otso Ovaskainen 4,5 , Sara Taskinen 6 , Steven C, Walker 2 , Francis K.C. Hul 7

MOLECULAR ECOLOGY

 MOLECULAR
 Volume 27, Issue 12

 June 2018
 Pages 2714-2724

Information

00

Related

Recommended

ORIGINAL ARTICLE

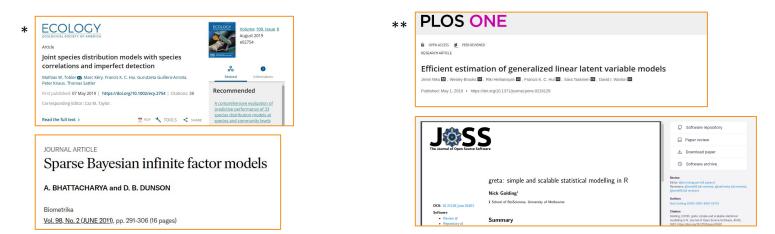
Uncovering the drivers of host-associated microbiota with joint species distribution modelling

Johannes R. Björk 🔀, Francis K. C. Hui, Robert B. O'Hara, Jose M. Montoya

First published: 14 May 2018 | https://doi.org/10.1111/mec.14718 | Citations: 25

Gen 2: Latent variable/factor analytic models

- Generalized linear latent variable models (LVMs)
 - Model residual between-response correlations using rank-reduction
 - Less flexible than MGLMMs, but probably good enough in most scenarios?*
 - Number of parameters scales as m, so can handle (a lot) more species*
 - Less random effects than MGLMMs, scaling as Nd; still quite challenging to fit**
 - *Choice of d remains a complicated and active topic
 - **Lots of work has been done in this space



Gen 2: Latent variable/factor analytic models

- Generalized linear latent variable models (LVMs)
 - Model residual between-species correlations using rank-reduction
- LVMs are not new news! Examples include psychometrics



Gen 2: Latent variable/factor analytic models

- LVMs are not new news, but they took off in ecology!
 - Model-based unconstrained and partial ordination, when d is small

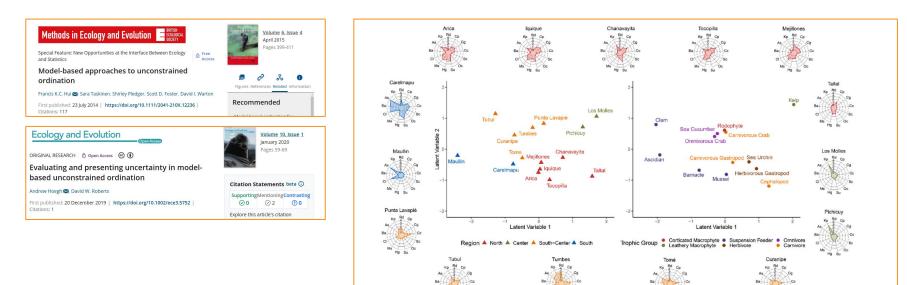
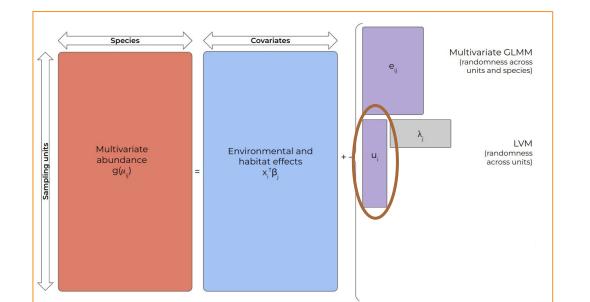


Fig. 3. Model-based unconstrained ordination of the interannual mean catch of all fishing coves for all main taxa according to a functional taxonomy combining class and trophic group. We used a Tweedie distribution function with a log link function to model biomass responses and included random row effects.

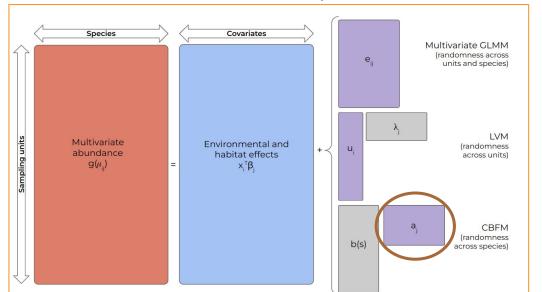
Gen 3: ???

- Latent variables as an approach to JSDMs is awesome
 - But I think we are pushing the limits of their scalability/computability?



Gen 3: ???

- Latent variables as an approach to JSDMs is awesome
 - But I think we are pushing the limits of their scalability/computability?
- Move the randomness from units to species -> basis functions



- Community-level basis function models (CBFMs) for spatio-temporal multivariate abundance data
 - Pre-defined spatio-temporal basis functions
 - <u>https://github.com/fhui28/CBFM</u>

Consider a set of species j = 1, ..., m recorded at a set of units i = 1, ..., N, where each unit has a space-time coordinate (s_i, t_i) . For a set of pre-defined spatio-temporal basis functions, b(s, t), a (basic) CBFM can be defined as

$$g\{\mu_{j}(\boldsymbol{s}_{i},t_{i})\} = \eta_{j}(\boldsymbol{s}_{i},t_{i}) = \boldsymbol{x}(\boldsymbol{s}_{i},t_{i})^{\top}\boldsymbol{\beta}_{j} + \boldsymbol{b}(\boldsymbol{s}_{i},t_{i})^{\top}\boldsymbol{a}_{j}$$

$$[\boldsymbol{a}] = [(\boldsymbol{a}_{1},\ldots,\boldsymbol{a}_{m})] = \mathcal{N}(\boldsymbol{0},\boldsymbol{G}\otimes\boldsymbol{\Sigma})$$

$$\boldsymbol{G} = \boldsymbol{\Lambda}_{G}\boldsymbol{\Lambda}_{G}^{\top} + \kappa_{G}\boldsymbol{I}_{m}; \quad \dim(\boldsymbol{\Lambda}_{G}) = m \times d_{m}, d_{m} \ll m$$

$$\Rightarrow m \times m \text{ rank-reduced baseline between-species correlation matrix}$$

$$\boldsymbol{\Sigma} = \boldsymbol{\Lambda}_{\Sigma}\boldsymbol{\Lambda}_{\Sigma}^{\top} + \kappa_{\Sigma}\boldsymbol{I}_{q}; \quad \dim(\boldsymbol{\Lambda}_{\Sigma}) = q \times d_{q}, d_{q} \ll q$$

$$\Rightarrow q \times q \text{ rank-reduced community-level covariance matrix for basis functions.}$$
that $\operatorname{Cov}\{\eta_{i}(\boldsymbol{s},t), \eta_{i'}(\boldsymbol{s}',t')\} = G_{ii'}\boldsymbol{b}(\boldsymbol{s},t)^{\top}(\boldsymbol{\Lambda}_{\Sigma}\boldsymbol{\Lambda}_{\Sigma}^{\top} + \kappa_{\Sigma}\boldsymbol{I}_{q})\boldsymbol{b}(\boldsymbol{s}',t'), \text{ where } G_{ii'} = 1 \text{ if } j = j' \text{ and } \boldsymbol{\lambda}_{G}^{\top}\boldsymbol{i}\boldsymbol{\lambda}_{G,i'} \text{ otherwise}$

Note that $\text{Cov}\{\eta_j(s,t),\eta_{j'}(s',t')\} = G_{jj'}\boldsymbol{b}(s,t)^{\top}(\boldsymbol{\Lambda}_{\Sigma}\boldsymbol{\Lambda}_{\Sigma}^{\top} + \kappa_{\Sigma}\boldsymbol{I}_q)\boldsymbol{b}(s',t')$, where $G_{jj'} = 1$ if j = j' and $\boldsymbol{\lambda}_{G,j}^{\top}\boldsymbol{\lambda}_{G,j'}$ otherwise

• But why would CBFMs be faster?

Consider a set of species j = 1, ..., m recorded at a set of units i = 1, ..., N, where each unit has a space-time coordinate (s_i, t_i) . For a set of pre-defined spatio-temporal basis functions, b(s, t), a (basic) CBFM can be defined as

$$g\{\mu_{j}(\boldsymbol{s}_{i},t_{i})\} = \eta_{j}(\boldsymbol{s}_{i},t_{i}) = \boldsymbol{x}(\boldsymbol{s}_{i},t_{i})^{\top}\boldsymbol{\beta}_{j} + \boldsymbol{b}(\boldsymbol{s}_{i},t_{i})^{\top}\boldsymbol{a}_{j}$$

$$[\boldsymbol{a}] = [(\boldsymbol{a}_{1},\ldots,\boldsymbol{a}_{m})] = \mathcal{N}(\boldsymbol{0},\boldsymbol{G}\otimes\boldsymbol{\Sigma})$$

$$\boldsymbol{G} = \boldsymbol{\Lambda}_{G}\boldsymbol{\Lambda}_{G}^{\top} + \kappa_{G}\boldsymbol{I}_{m}; \quad \dim(\boldsymbol{\Lambda}_{G}) = m \times d_{m}, d_{m} \ll m$$

$$\Rightarrow m \times m \text{ rank-reduced baseline between-species correlation matrix}$$

$$\boldsymbol{\Sigma} = \boldsymbol{\Lambda}_{\Sigma}\boldsymbol{\Lambda}_{\Sigma}^{\top} + \kappa_{\Sigma}\boldsymbol{I}_{q}; \quad \dim(\boldsymbol{\Lambda}_{\Sigma}) = q \times d_{q}, d_{q} \ll q$$

$$\Rightarrow q \times q \text{ rank-reduced community-level covariance matrix for basis functions.}$$
we that $\operatorname{Cov}\{n_{i}(\boldsymbol{s}, t), n_{i'}(\boldsymbol{s}', t')\} = G_{ii'}\boldsymbol{b}(\boldsymbol{s}, t)^{\top}(\boldsymbol{\Lambda}_{\Sigma}\boldsymbol{\Lambda}_{\Sigma}^{\top} + \kappa_{\Sigma}\boldsymbol{I}_{a})\boldsymbol{b}(\boldsymbol{s}', t'), \text{ where } G_{ii'} = 1 \text{ if } i = i' \text{ and } \boldsymbol{\lambda}_{G}^{\top} \cdot \boldsymbol{\lambda}_{G,i'} \text{ oth}$

Note that $\text{Cov}\{\eta_j(s,t),\eta_{j'}(s',t')\} = G_{jj'}\boldsymbol{b}(s,t)^{\top}(\boldsymbol{\Lambda}_{\Sigma}\boldsymbol{\Lambda}_{\Sigma}^{\top} + \kappa_{\Sigma}\boldsymbol{I}_q)\boldsymbol{b}(s',t')$, where $G_{jj'} = 1$ if j = j' and $\boldsymbol{\lambda}_{G,j'}^{\top}\boldsymbol{\lambda}_{G,j'}$ otherwise

• But why would CBFMs be faster?

• Although m may not be small, N is still larger in most modern datasets

Consider a set of species j = 1, ..., m recorded at a set of units i = 1, ..., N, where each unit has a space-time coordinate (s_i, t_i) . For a set of pre-defined spatio-temporal basis functions, b(s, t), a (basic) CBFM can be defined as

$$g\{\mu_{j}(\boldsymbol{s}_{i},t_{i})\} = \eta_{j}(\boldsymbol{s}_{i},t_{i}) = \boldsymbol{x}(\boldsymbol{s}_{i},t_{i})^{\top}\boldsymbol{\beta}_{j} + \boldsymbol{b}(\boldsymbol{s}_{i},t_{i})^{\top}\boldsymbol{a}_{j}$$

$$[\boldsymbol{a}] = [(\boldsymbol{a}_{1},\ldots,\boldsymbol{a}_{m})] = \mathcal{N}(\boldsymbol{0},\boldsymbol{G}\otimes\boldsymbol{\Sigma})$$

$$\boldsymbol{G} = \boldsymbol{\Lambda}_{G}\boldsymbol{\Lambda}_{G}^{\top} + \kappa_{G}\boldsymbol{I}_{m}; \quad \dim(\boldsymbol{\Lambda}_{G}) = m \times d_{m}, d_{m} \ll m$$

$$\Rightarrow m \times m \text{ rank-reduced baseline between-species correlation matrix}$$

$$\boldsymbol{\Sigma} = \boldsymbol{\Lambda}_{\Sigma}\boldsymbol{\Lambda}_{\Sigma}^{\top} + \kappa_{\Sigma}\boldsymbol{I}_{q}; \quad \dim(\boldsymbol{\Lambda}_{\Sigma}) = q \times d_{q}, d_{q} \ll q$$

$$\Rightarrow q \times q \text{ rank-reduced community-level covariance matrix for basis functions.}$$
e that $\operatorname{Cov}\{n_{i}(\boldsymbol{s},t), n_{i'}(\boldsymbol{s}',t')\} = G_{ii'}\boldsymbol{b}(\boldsymbol{s},t)^{\top}(\boldsymbol{\Lambda}_{\Sigma}\boldsymbol{\Lambda}_{\Sigma}^{\top} + \kappa_{\Sigma}\boldsymbol{I}_{a})\boldsymbol{b}(\boldsymbol{s}',t'), \text{ where } G_{ii'} = 1 \text{ if } i = i' \text{ and } \boldsymbol{\lambda}_{G}^{\top} \cdot \boldsymbol{\lambda}_{G,i'} \text{ oth}$

Note that $\text{Cov}\{\eta_j(\boldsymbol{s},t),\eta_{j'}(\boldsymbol{s}',t')\} = G_{jj'}\boldsymbol{b}(\boldsymbol{s},t)^{\top}(\boldsymbol{\Lambda}_{\Sigma}\boldsymbol{\Lambda}_{\Sigma}^{\top} + \kappa_{\Sigma}\boldsymbol{I}_q)\boldsymbol{b}(\boldsymbol{s}',t')$, where $G_{jj'} = 1$ if j = j' and $\boldsymbol{\lambda}_{G,j}^{\top}\boldsymbol{\lambda}_{G,j'}$ otherwise

- But why would CBFMs be faster?
 - Although m may not be small, N is still larger in most modern datasets
 - It is just a big generalized additive model (GAM)!

Generalized Additive Models An Introduction with R, Second Edition By Smon N, Wood - 2017	Contraction Contracti	Original Article & full Access Spatio-temporal smoothing and EM estimation for massive remote-sensing data sets Secal Access Spatio-temporal smoothing and EM estimation for massive remote-sensing data sets
Certhinade + Add to my litrary	First publishes: O January 2008 https://doi.org/10.1111/j.1467-9868.2007.0683.x Citations: 419 Recommended	Information Matthias Katzhos, Noel Cressie Clation Statements beta ③ Pirst published: 03 May 2011 https://doi.org/10.1111/j.1467-9892.2011.00732.x

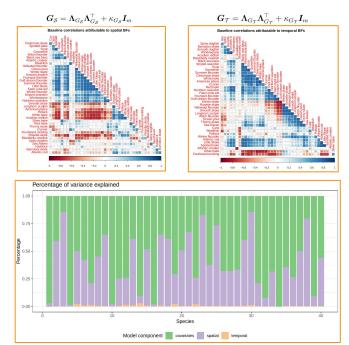
Consider a set of species j = 1, ..., m recorded at a set of units i = 1, ..., N, where each unit has a space-time coordinate (s_i, t_i) . For a set of pre-defined spatio-temporal basis functions, b(s, t), a (basic) CBFM can be defined as

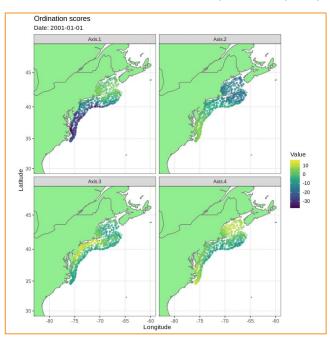
$$\begin{split} g\{\mu_j(\boldsymbol{s}_i,t_i)\} &= \eta_j(\boldsymbol{s}_i,t_i) = \boldsymbol{x}(\boldsymbol{s}_i,t_i)^\top \boldsymbol{\beta}_j + \boldsymbol{b}(\boldsymbol{s}_i,t_i)^\top \boldsymbol{a}_j \\ [\boldsymbol{a}] &= [(\boldsymbol{a}_1,\ldots,\boldsymbol{a}_m)] = \mathcal{N}(\boldsymbol{0},\boldsymbol{G}\otimes\boldsymbol{\Sigma}) \\ \boldsymbol{G} &= \boldsymbol{\Lambda}_{G}\boldsymbol{\Lambda}_{G}^\top + \kappa_{G}\boldsymbol{I}_m; \quad \dim(\boldsymbol{\Lambda}_{G}) = m \times d_m, d_m \ll m \\ &\Rightarrow m \times m \text{ rank-reduced baseline between-species correlation matrix} \\ \boldsymbol{\Sigma} &= \boldsymbol{\Lambda}_{\Sigma}\boldsymbol{\Lambda}_{\Sigma}^\top + \kappa_{\Sigma}\boldsymbol{I}_q; \quad \dim(\boldsymbol{\Lambda}_{\Sigma}) = q \times d_q, d_q \ll q \\ &\Rightarrow q \times q \text{ rank-reduced community-level covariance matrix for basis functions.} \end{split}$$
Note that $\operatorname{Cov}\{\eta_j(\boldsymbol{s},t), \eta_{j'}(\boldsymbol{s}',t')\} = G_{jj'}\boldsymbol{b}(\boldsymbol{s},t)^\top (\boldsymbol{\Lambda}_{\Sigma}\boldsymbol{\Lambda}_{\Sigma}^\top + \kappa_{\Sigma}\boldsymbol{I}_q)\boldsymbol{b}(\boldsymbol{s}',t'), \text{ where } G_{jj'} = 1 \text{ if } j = j' \text{ and } \boldsymbol{\lambda}_{G,j'}^\top \boldsymbol{\lambda}_{G,j'} \text{ otherm} \end{split}$

wise

- Basis functions are not new news
 - GAMs have been known in ecology for a long time. But not so much fixed rank kriging

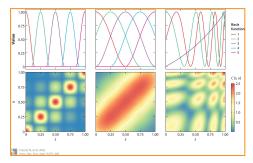
- Basis functions are not new news
 - GAMs have been known in ecology for a long time. But not so much fixed rank kriging
 - It takes a while to translate statistical methods to other disciplines (properly)...





- Basis functions are not new news
 - GAMs have been known in ecology for a long time. But not so much fixed rank kriging
 - It takes a while to translate statistical methods to other disciplines (properly)...
- Is Gen 3 ⊂ Gen2+? Isn't basis functions just an approximation of spatio-temporal LVMs?

- Basis functions are not new news
 - GAMs have been known in ecology for a long time. But not so much fixed rank kriging
 - It takes a while to translate statistical methods to other disciplines (properly)...
- Is Gen 3 ⊂ Gen2+? Isn't basis functions just an approximation of spatio-temporal LVMs?
 - Depends on how you want to approach basis functions: "one person's mean is another person's covariance" (Cressie, 1993)
 - A "basis function" mindset can opens up new opportunities



- CBFM = Leveled up FRK = A very big generalized additive model (GAM)
 - Penalized quasi-likelihood (PQL) estimation for all coefficients, dispersion parameters; amenable to parallelization

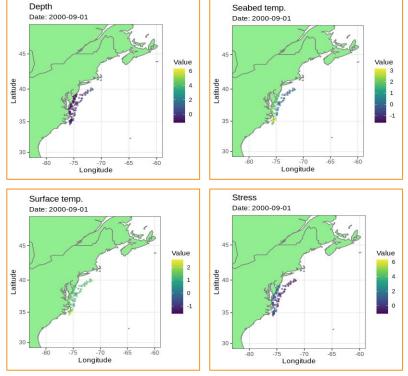
Let A is the $m \times q$ matrix formed by stacking the a_j 's as row vectors. Then given G and Σ , update (β_j, a_j) 's, and ϕ_j 's using

$$\ell_{\mathsf{PQL}} = \sum_{i=1}^{N} \sum_{j=1}^{m} \log\{f(y_j(\boldsymbol{s}_i, t_i); \mu_j(\boldsymbol{s}_i, t_i), \boldsymbol{\phi}_j)\} - \frac{1}{2} \mathsf{tr}\left(\boldsymbol{G}^{-1} \boldsymbol{A} \boldsymbol{\Sigma}^{-1} \boldsymbol{A}^{\top}\right).$$

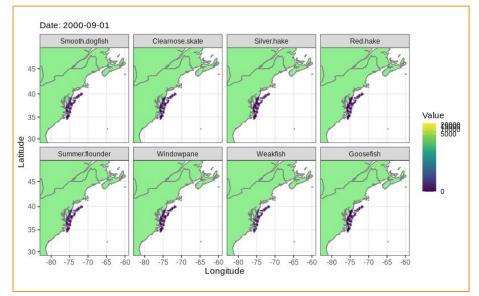
- NorthEast Fisheries Science Center (NEFSC) fall bottom trawl survey
 - https://www.fisheries.noaa.gov/inport/item/22560
 - Subset of 2000-2019

Login Organizati	ons Search	Stats	Help	Guest
 NEFSC Metadata Library Fall Bottom Data Set (DS) No ID: 22560 Updated: 	Trawl Survertheast Fisheries	Vey Science		COMPLETION RUBRIC 83% 29 / 35 Wiew Report
View As	<u>Hierarchy</u>			
Short Citation: Northeast Fisheries Scie	ence Center, 2021: Fa	II Bottom 1	rawl Survey, https://www.fisheries.noaa.gov/inport/item/22560.	<u>Full Citation Examples</u>
Item Identificat	ion			
Title:	Fa	ll Bottom	Trawl Survey	
Short Name:	Fa	ll Bottom	Trawl Survey	
Status:	Co	mpleted		
Abstract:	ext	The standardized NEFSC Fall Bottom Trawl Survey was initiated in 1963 and covered an area from Hudson Canyon, NY to Nova Scotia, Canada. Throughout the years, coverage has extended as far south as Florida and sampling depths have ranged from <27 to 366 m. Currently, the survey coverage is from Cape Hatteras, NC to Nova Scotia and the minimum depth range is > 18 m as the result of a change in the sampling platform. This has resulted in the exclusion of many inshore strata.		
Purpose:	she	elf during t	of the Fall Bottom Trawl Survey is to determine the seasonal distribution, relative abundance, and biodiversity of fish and invertebrate species f he fall months, typically September to November. Other cruise objectives are: to collect biological samples for age determinations and growth s cology; opportunistically test trawl gear, methods, or survey-related equipment that may benefit the trawl survey in the future; collect oceanog	utidies, fecundity, maturity,

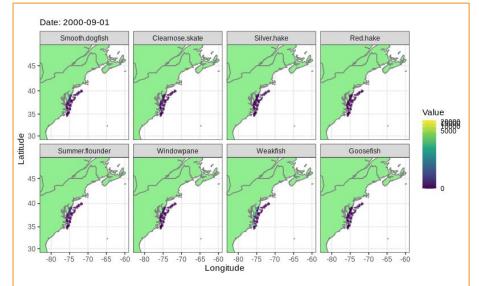
- Four example covariates in fall bottom trawl survey:
 - There are more covariates (between 20-30)...



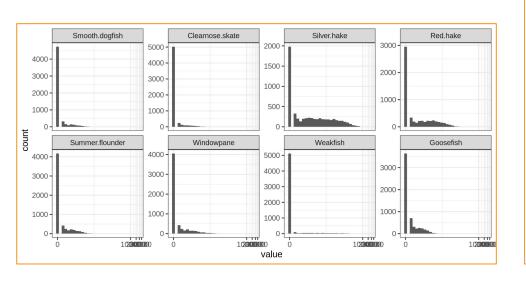
- Eight example demersal fish species in fall bottom trawl survey
 - Around 150ish taxa in total
 - High-dimensional, correlated responses

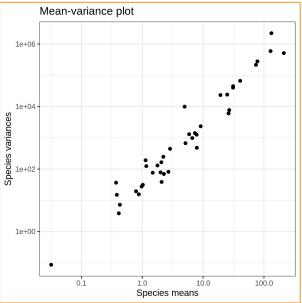


- Eight example demersal fish species in fall bottom trawl survey
 - Around 150ish taxa in total
 - High-dimensional, correlated responses
- Some other noteworthy points:
 - You never visit the same location more than once
 - About 6,000 space-time locations visited between 2000-2019



- Responses are:
 - Sparse, non-continuous
 - Strong mean-variance relationship (various reasons behind this)





- CBFM = Leveled up FRK = A very big generalized additive model (GAM)
 - Penalized quasi-likelihood (PQL) estimation for all coefficients, dispersion parameters; amenable to parallelization
 - Maximum restricted Laplace-approximated likelihood estimation for the loadings and nugget effects

Let \mathcal{X} and \mathcal{B} be appropriately defined model matrices based on the $\boldsymbol{x}(\boldsymbol{s}_i, t_i)$ and $\boldsymbol{b}(\boldsymbol{s}_i, t_i)$'s respectively, and $\hat{\boldsymbol{W}}$ by a diagonal matrix of weights. Then given $(\boldsymbol{\beta}_j, \boldsymbol{a}_j)$'s, and ϕ_j 's, update the loadings and nugget effects characterizing \boldsymbol{G} and $\boldsymbol{\Sigma}$ using

$$\ell_{\mathsf{REML}} = \frac{q}{2} \log \det(\mathbf{G}^{-1}) + \frac{m}{2} \log \det(\mathbf{\Sigma}^{-1}) - \frac{1}{2} \mathsf{tr} \left(\mathbf{G}^{-1} \hat{\mathbf{A}} \mathbf{\Sigma}^{-1} \hat{\mathbf{A}}^{\top}\right) - \frac{1}{2} \log \det \left(\mathcal{B}^{\top} \left(\hat{\mathbf{W}} - \hat{\mathbf{W}} \mathcal{X} \left(\mathcal{X}^{\top} \hat{\mathbf{W}} \mathcal{X}\right)^{-1} \mathcal{X}^{\top} \hat{\mathbf{W}}\right) \mathcal{B} + \mathbf{G}^{-1} \otimes \mathbf{\Sigma}^{-1}\right).$$

- CBFM = Leveled up FRK = A very big generalized additive model (GAM)
 - Penalized quasi-likelihood (PQL) estimation for all coefficients, dispersion parameters; amenable to parallelization
 - Maximum restricted Laplace-approximated likelihood estimation for the loadings and nugget effects
 - Approximate large sample distributions for coefficients/linear predictors etc...

$$egin{pmatrix} \hat{oldsymbol{eta}} \ \hat{oldsymbol{a}} \ \hat{oldsymbol{a}} \ \hat{oldsymbol{a}} \ \hat{oldsymbol{a}} \ \hat{oldsymbol{a}} \ \hat{oldsymbol{B}} \ \hat{oldsymbol{A}} \ \hat{oldsymbol{B}} \ \hat{oldsymbol{B}} \ \hat{oldsymbol{A}} \ \hat{oldsymbol{B}} \ \hat{oldsymbol$$

where β_0 and a denote the true parameter values of the regression coefficients.

- CBFM = Leveled up FRK = A very big generalized additive model (GAM)
 - Penalized quasi-likelihood (PQL) estimation for all coefficients, dispersion parameters; amenable to parallelization
 - Maximum restricted Laplace-approximated likelihood estimation for the loadings and nugget effects
 - Approximate large sample distributions for coefficients/linear predictors etc...
 - Adapt GAM tools for residual analysis, model selection, prediction etc...;
 variance-partitioning; space-time ordination using SVD-type ideas, and so on

$$egin{pmatrix} \hat{oldsymbol{\beta}} \ \hat{oldsymbol{a}} \ \hat{oldsymbol{a}} \ \hat{oldsymbol{a}} \ \hat{oldsymbol{a}} \ \hat{oldsymbol{a}} \ \hat{oldsymbol{\beta}} \ \hat{oldsymbol{a}} \ \hat{oldsymbol{\beta}} \ \hat{oldsymbol{a}} \ \hat{oldsymbol{\beta}} \ \hat{oldsymbol{a}} \ \hat{oldsymbol{\beta}} \ \hat{oldsymbol{\beta}$$

where β_0 and a denote the true parameter values of the regression coefficients.