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Disclaimer

e This is an opinionated review/perspective talk, so you will see a decent
chunk of my and my collaborators” works

O  Apologies for this!
o Thank you to all who have/continue to inspire me to work on JSDMs

SELF FIVE!




Multivariate abundance data
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Multivariate abundance data

ECOLOGY LETTERS R

e Some common features: e mons et dat
. conceptual framework and its implementation as ® 2 H O

o Multiple correlated responses i EaTe e e
(high_dimensional) Leo Duan, David Dunson, Tomas Roslin, Nerea Abrego The effect of environmental and -

o Non-continuous responses wwwewew  OEH @
with evident mean-variance 'S Occurrence E Environment
relatIO_nShlp . . Spatio-temporal context o *2 O 2

o Non-linear Y-X relationships Ofs Ol

e Y |2 X
2020 - g- Ole
O 8 O g
2000 m] o|v
Species i
1980 q"nn ?) ] P m) Covariates
5, °d B Q
B“ i ul:hr: W W O B O G o000
o
gy ?‘:'_I_, Y Phylogeny A Traits
o L L
W |3 b I
m Species <t Traits




Question/s of interests

e Depends on the data you have:

o (a)is a multivariate prediction
problem

o (b) ->howisY and X related?

o (c) -> how are the columns of
Y related?

o (d)+(e)->howdoT&C
mediate/drive the Y-X
relationship?

Idea and Perspective = & Open Access @ ®

How to make more out of community data? A

conceptual framework and its implementation as B 2 H O
models and software Figures References Related Information
Otso Ovaskainen &% Gleb Tikhonov, Anna Norberg, F. Guillaume Blanchet,

Leo Duan, David Dunson, Tomas Roslin, Nerea Abrego The effect of environmental and

Observational data

How to link the data to ecological questions?

(@)

L
ML)

Signals of environmental filtering: Are species (b)
associated to habitat characteristics?

v0 -0 ~@-0
Signals of biotic filtering: Do species co-occur? (©

o I

Signals of response traits: Are traits (here colour) (d)
associated to habitat characteristics? Here dark-

coloured species are associated with green habitat.

Signals of niche conservatism: Are habitat associations (e)

and traits correlated with phylogeny?




Enter the joint species distribution model

e Loosely speaking, a joint species distribution model (JSDM) refers to a statistical

method that simultaneously models all species

©)

Accounts for the fact that species may be correlated with each other (after adjusting

for measured predictor)
A single, potentially high-dimensional log-likelihood function
The sources of this (residual) correlation could be many...
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Enter the joint species distribution model

e Loosely speaking, a joint species distribution model (JSDM) refers to a statistical
method that simultaneously models all species
o Accounts for the fact that species may be correlated with each other (after adjusting
for measured predictor)
o Asingle, potentially high-dimensional log-likelihood function
o The sources of this (residual) correlation could be many...

e |SDMs are basically a counterpart to stacked species distribution models

(SSDMs), which model each species separately
o Log-likelihood function comprises the sum of independent species contributions e.g.,
fit a GLM/GAM/CLMM/ML etc...to each species



Enter the joint species distribution model

e A Google Scholar search of four key JSDM
phrases (as of 23 November 2022)

O
O
@)

Joint species distribution models
Model-based ordination

Joint dynamic species distribution
models

Hierarchical modeling of species
communities

e This is probably an underestimate of
JSDM’s rise...

Number of articles (Google Scholar)

200 A

1004

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
Year of publication




Enter the joint species distribution model

o Joint spec
O Model-base
0 Joint dyna

O Hierarchic
communitie

e Thisis probabl
JSDM’s rise...
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Gen 1: MGLMMs

e Multivariate generalized linear mixed model (MCLMM)
o Model residual between-species correlations using a multivariate random intercept
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Gen 1: MGLMMs

e Multivariate generalized linear mixed model (MGLMM)
o Model residual between-species correlations using a multivariate random intercept
o Exponential family is being used “loosely” here to cover many response distributions

Consider a set of species j = 1,..., m recorded at a set of observational units i = 1,..., N, along

with measured covariates x;. Then a vanilla JSDM is defined as

(J(:“l]) == Uij = wl—rﬂ] —— ffij
[e;] = N(0,%)
[yij|ei] = Exp-Fam(y;;, ;)

N m
(@) = log (/ f(yiilwas, #5) f (i) (le,->



e Multivariate generalized linear mixed model (MCLMM)

o Model residual between-species correlations using a _

o Exponential family is being used “loosely” here to cover many response distributions

Species > < Covariates >

Multivariate GLMM
(randomness across
units and species)




Gen 1: MGLMMs

e Multivariate generalized linear mixed model (MCLMM)

Model residual between-species correlations using a multivariate random intercept
Exponential family is being used “loosely” here to cover many response distributions
Pretty flexible (at least for correlations/symmetric associations)

Number of parameters scale as m?, so great if m is not large (compared to N)

Lots of random effects, scaling as Nm

O O O O O

Consider a set of species j = 1,..., m recorded at a set of observational units i = 1,..., N, along

with measured covariates x;. Then a vanilla JSDM is defined as
9(psz) = mig =) By + €3
[ei] = N(O 2)
[yi;|ei] = Exp-Fam(u;;, ¢;)

N m
(%) =3 log (/ f(isl iz, 5) f (e:) (le,->
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Gen 1: MGLMMs

e Multivariate generalized linear mixed model (MCLMM)

Model residual between-species correlations using a multivariate random intercept
Exponential family is being used “loosely” here to cover many response distributions
Pretty flexible (at least for correlations/symmetric associations)

Number of parameters scale as m?, so great if m is not large (compared to N)

Lots of random effects, scaling as Nm

O O O O O

e Largely overtaken by Gen 2 J[SDMs, but advances continue to be made...
O Translating ideas from sparse graphical model/network/ML literature
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Gen 2: Latent variable/factor analytic models

e Ceneralized linear latent variable models (L\VMs)
o Model residual between-species correlations using rank-reduction
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Gen 2: Latent variable/factor analytic models

e Ceneralized linear latent variable models (L\VMs)
o Model residual between-species correlations using rank-reduction

Consider a set of species j = 1,...,m recorded at a set of observational units i = 1,..., N, along
with covariates x;. Then a (basic) LVM is defined as

g(pij) = mij = ) Bj + u; A
[u;] = N(0,1;); d<m
[yij|wi] = Exp-Fam(pj, @5); Cov(mij, mij) = A Ay

N m
(@) => log ( / LT £ sl ) f () dm)
i=1 j=1
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Generalized linear latent variable models (LVMs)

O

Model residual between-species correlations using rank-reduction
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Gen 2: Latent variable/factor analytic models

e Ceneralized linear latent variable models (L\VMs)
o Model residual between-species correlations using rank-reduction
o Less flexible than MGLMMSs, but probably good enough in most scenarios?
o Number of parameters scales as m, so can handle (a lot) more species
o Less random effects than MGLMMs, scaling as Nd

Consider a set of species j = 1,...,m recorded at a set of observational units i = 1,..., N, along
with covariates x;. Then a (basic) LVM is defined as

g(pij) = mij = ) Bj + u; A
[u;] = N(0,1;); d<m
[yij|wi] = Exp-Fam(pj, @5); Cov(mij, mij) = A Ay

N m
(@) => log ( / LT £ sl ) f () dm)
i=1 j=1
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Gen 2: Latent variable/factor analytic models

e Ceneralized linear latent variable models (LVMs)
o Model residual between-species correlations using rank-reduction

e LVMs are not new news! Examples include psychometrics, agriculture (MET)
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Gen 2: Latent variable/factor analytic models

e LVMs are not new news, but they took off in ecology!
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Gen 2: Latent variable/factor analytic models
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Gen 2: Latent variable/factor analytic models

e LVMs are not new news, but they took off in ecology!
o Model-based unconstrained/partial/concurrent ordination, when d is small
o Latent variables interpreted as unobserved environmental predictors
m Neat interpretation but practically not very useful

22



Gen 2: Latent variable/factor analytic models

e LVMs are not new news, but they took off in ecology!
o Model-based unconstrained/partial/concurrent ordination, when d is small
o Latent variables interpreted as unobserved environmental predictors
m Neat interpretation but practically not very useful

o Rank-reduction concept used in other community ecology contexts
m  Vector autoregressive models; community-level drivers/regulators
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Gen 2+: LVMs with all the extras

e Current JSDM paradigm
o Make LVMs more flexible and/or computationally more scalable
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Example 1: Spatio-temporal LVMs
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Gen 2+: LVMs with all the extras

e Example 1: Spatio-temporal LVMs
o Many flavours e.g., tensor-product or additive LVs, dynamic loadings
o Faster approximations/algorithms e.g., LVs + SPDE/NNGP/GPP
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e Example 2: Borrow strength across species
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Gen 2+: LVMs with all the extras

e Example 2: Borrow strength across species
o Traits mediate species mean responses to environment (“fourth-corner” models)
o Phylogeny drives (dis)similarity in response to environment (phylogenetic LVMs)
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Example 3: Borrow strength across species (in the loadings)
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Gen 2+: LVMs with all the extras

e Example 3: Borrow strength across species (in the loadings)
o Clustering process on the loadings matrix (archetypal species associations)
o Regress loadings against measured covariates (environment dependent associations)

ORIGINAL RESEARCH article Statistica Sinica 29 (2019), 1127-1154
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Ci Recommended

Y University of California, Los Angeles and > Duke University

Consider a set of species j = 1,...,m recorded at a set of observational units i = 1,..., N, along with covariates
;. Then a (basic) loading-clustered LVM is defined as

m =x; B; +u; Z" q(k;)
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Gen 2+: LVMs with all the extras

e There are many other extensions of LVMs, which | do not be cover/know about!

ar (iv > stat > arXiv:2103.05557

BRITISH
ECOLOGICAL
SOCIETY

Volume 12, Issue 8
August 2021 Statistics > Methodology
Pa;

Methods in Ecology and Evolution

s 1458-1474 [Submitted (1), la

Covariate-informed latent |nteractlon models: Addressing geographic & taxonomic bias in predicting bird-plant
interactions

RESEARCH ARTICLE = & Full Access

Effectiveness of joint species distribution models in
the presence of imperfect detection

L] & oo o Climate change and reductions in natural habitats urge that we better understand species' interconnection and how biological communities respond to environmental changes. However, ecological studies
Stephanie Elizabeth Hogg 5% Yan Wang, Lewi Stone Figures References Related Informat ) i o o ) o
-//doi co
1:12 April 2021 | https://doi.org/10.1111/2041-210X.13614 Recommended ECOG RAPHY . ECOGRAPHY Volume 44, Issue 4

April 2021

P; 612-625

ar (iv > stat > arXiv:2204.02707

Research & openaccess @ @

Statistics > Applications Forecasting community reassembly using climate-

[Submitted on 6 Apr 2022]

. . L N i . i i i linked spatio-temporal ecosystem models
Joint species distribution models with imperfect detection for high-dimensional spatial data

James T. Thorson s Mayumi L. Arimitsu, Lewis A. K. Barnett, Wei Cheng,

Lisa B. Eisner, Alan C. Haynie, Albert ). Hermann ... See all authors v
Recommended

objectives of ecology and conservation. Joint species distribution models use multi-species detection-nondetection data i

27 January 2021 | https://doi.org/10.1111/ecog.05471
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Some closing remarks/thoughts

e |SDMs is a success story of how to translate and sell statistics...
o Targeted software + relevant interpretations/answers + methods-vs-maths gap
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Some closing remarks/thoughts

e |SDMs is a success story of how to translate and sell statistics...
Targeted software + relevant interpretations/answers + methods-vs-maths gap

@)

e Still many gaps in the JSDMs literature to close. Personal examples include:

@)

©)
©)
©)

-Function Models

Spatial Statistics

Directional associations (structural equation modeling)?

Where do machine learning techniques come into this?

Data integration/fusion in JSDMs

Gen 3: Replacing latent variables with (spatio-temporal) basis functions
m https://github.com/fthui28/CBFM

@ Trendsin Ecology& Evolution  [Supsrs open aceess Invited paper | Published: 01 January 2014

Lingam: Non-Gaussian Methods for Estimating
Causal Structures

REVIEW | VOLUVE 35, ISSUE 1, PS5.67, JANUARY 01, 20

Data Integration for Large-Scale Models of Species

istributi shohei shimizu&
Distributions Shohei Shimizu

Behaviormetrika 41, 65-98 (2014) | Cite this article

262 Accesses 39 Citations | Metrics

Abstract
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Some closing remarks/thoughts

e |SDMs is a success story of how to translate and sell statistics...
o Targeted software + relevant interpretations/answers + methods-vs-maths gap

e Still many gaps in the JSDMs literature to close. Personal examples include:
o Directional associations (structural equation modeling)?
o Where do machine learning techniques come into this?
o Data integration/fusion in JSDMs
o Gen 3: Replacing latent variables with (spatio-temporal) basis functions
m https://github.com/thui28/CBFM

e |SDMs is not the be-all and end-all

o E.g, Stacked SDMs are still a powerful statistical approach
o Do not throw the kitchen sink at something that does not need it
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= Thank you for listening!

Home Proje:

About me

| like anime, drinking tea, and occassionally doing some statistics.

Any questions?

Research Interests Education
f . . « Alternate likelihood methods 1= PhD,2015
for estimation and inference sity of New South Wales
ra n C I S : h U I @a n U ° e d U : a U « Ecological statistics 1= BSc/BA (Honours |, Uni Medal in
h f . h . | .f « Longitudinal, spatio-temporal, Statistics), 2012
tt : t and correlated data analysis Iniversity of New South
pS.// ranCIS UI‘ne I y.app/ « Mixed effects models and

estimating equations
Model selecton and dimension
[ reduction

Semiparametric regression
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Multivariate abundance data

e Some common features:

o Multiple correlated responses
(high-dimensional)

o Non-continuous responses
with evident mean-variance
relationship

o Non-linear Y-X relationships

e Other features:
o  Spatio-temporal
(high-volume)
o Multiple data sources
o Background information

rcorocy [

Idea and Perspective = & Open Access [©XO])

How to make more out of community data? A
conceptual framework and its implementation as ® 2 H O
models and software Figures References i

Otso Ovaskainen 5% Gleb Tikhonov, Anna Norberg, F. Guillaume Blanchet,

Leo Duan, David Dunson, Tomas Roslin, Nerea Abrego The effect of environmental and

W W W N o b

mOod e

= Occurrence -~ Environment
(m} (m}
Spatio-temporal context Ol O a2
al|s O g
2 Y |5 X
, (m} g- 0|3
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2000 m] o|v
1980 g, © @ (m] Species O Covariates
g, °d 8 = Q
B“ B qS W e W %P U b o000
o
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o Y Y
W C |IET
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Question/s of interests

e Depends on the data you have:

o (a)is a multivariate prediction
problem

o (b) ->howisYand X related?

o (c) -> how are the columns of
Y related?

o (d)+(e)->howdoT&C
mediate/drive the Y-X
relationship?

e Some other applications:
o Model-based ordination
o Bioregionalization

JOURNAL ARTICLE  EDITOR'S CHOICE
Bioregions in Marine Environments: Combining
Biological and Environmental Data for Management
and Scientific Understanding
Skipton N C Woolley &, Scott D Foster, Nicholas J Bax, Jock C Currie,
Daniel C Dunn, Cecilie Hansen, Nicole Hill, Timothy D O’Hara,
Otso Ovaskainen, Roger Sayre ... Show more

BioScience, Volume 70, Issue 1, January 2020, Pages 48-59,
https://doi.org/10.1093/biosci/biz133
Published: 18 December 2019

Trends in Ecology & Evolution G’

CelPress;

Volume 30, Issue 12, December 2015, Pages 766-779

So Many Variables: Joint Modeling in
Community Ecology

David I. Warton ! 2 &, F. Guillaume Blanchet, Robert B. O’Hara 3, Otso Ovaskainen *, Sara
Taskinen & Steven C. Walker 2 Francis K.C. Hui

MOLECULAR ECOLOGY

pULAY  Volume 27, Issue 12
June 2018
B Pages 27142724

ORIGINAL ARTICLE

Uncovering the drivers of host-associated
microbiota with joint species distribution modelling oo (]

Related
Johannes R. Bjork %4, Francis K. C. Hui, Robert B. O'Hara, Jose M. Montoya

hed: 14 May 2018 | https://doi.org/10.1111/mec.14718 | Citations: 25 Recommended 38



Gen 2: Latent variable/factor analytic models

e Ceneralized linear latent variable models (LVMs)

o Model residual between-response correlations using rank-reduction

o Less flexible than MGLMMSs, but probably good enough in most scenarios?*
o Number of parameters scales as m, so can handle (a lot) more species*
(@)

Less random effects than MGLMMs, scaling as Nd; still quite challenging to fit**
m  *Choice of d remains a complicated and active topic
m  **Lots of work has been done in this space

* | ESPLOGY

\\\\\\\

xx PLOS ONE

& OPINACES B PEERAMEWED
Joint species distribution models with species

correlations and imperfect detection Efficient estimation of generalized linear latent variable models

i Niku B3 , Westey Brooks B, Rk Herliansyah B, Francis K. C. Hul B, Sara Taskinen @, David I. Warton B

JOURNAL ARTICLE ||| Theloumnal of Open Source Software

Sparse Bayesian infinite factor models

: simple and scalable statistical modelling in R

A. BHATTACHARYA and D. B. DUNSON

Biometrika

rrrrrrr

Vol. 98, No. 2 (JUNE 2011), pp. 291-306 (16 pages) il Summary




Gen 2: Latent variable/factor analytic models

Generalized linear latent variable models (LVMs)

@)

Model residual between-species correlations using rank-reduction

LVMs are not new news! Examples include psychometrics

28

People
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effects
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Multivariate GLMM
(randomness across
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mirt: A Multidimensional Item Response Theory
Package for the R Environment

R.Phillp Chelmer rs

Abstract

PWILEY

Latent Variable Models
and Factor Analysis

Interdisciplinary Statistics
GENERALIZED LATENT
VARIABLE MODELING

Multilevel, Longitudinal
and Structural Equation ModelS
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Sophia Rabe-Hesketh

David Bartholomew
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Gen 2: Latent variable/factor analytic models

e LVMs are not new news, but they took off in ecology!
o  Model-based unconstrained and partial ordination, when d is small

Methods in Ecology and Evolution

Special Feature: New Opportunities at the Interface Between Ecology o
and Statistics

Model-based approaches to unconstrained
ordination

Francis K.C. Hui 4. Sara Taskinen, Shirley Pledger, Scott D. Foster, David I. Warton
F 23July 2014 | https://doi.org/10.1111/2041-210X.12236
ons: 117

Ecology and Evolution

ORIGINAL RESEARCH @ OpenAccess @ (®

Evaluating and presenting uncertainty in model-
based unconstrained ordination

Andrew Hoegh B4, David W. Roberts

F d: 20 December 2019 | https://doi.org/10.1002/ece3.5752 |
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Fig. 3. Model-based unconstrained ordination of the interannual mean catch of all fishing coves for all main taxa according to a functional taxonomy
combining class and tronhic eroun. We used a Tweedie distribution function with a loe link function to model biomass resnonses and included random row effects
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® |Latentvariablesasan a

(©)

But | think we are

roach to JSDMs is awesome

oushing the limits of their scalabilty/computabily?

Sampling units

Species

J &

Covariates

Multivariate GLMM
(randomness across
units and species)

LVM
(randomness
across units)
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roach to JSDMs is awesome

oushing the limits of their scalabilty/computabily?

® Latentvariables as an a
But | think we are

e Move the randomness from units to species -> basis functions

Multivariate GLMM
(randomness across
units and species)

Sampling units

LVM
(randomness
across units)

CBFM
(randomness
across species)




Gen 3: CBFMs?

e Community-level basis function models (CBFMs) for spatio-temporal multivariate

abundance data
o Pre-defined spatio-temporal basis functions
o https://github.com/fhui28/CBFM

Consider a set of species j = 1,...,m recorded at a set of units i = 1,..., N, where each unit has a space-time
coordinate (s;,t;). For a set of pre-defined spatio-temporal basis functions, b(s,t), a (basic) CBFM can be defined
as

g{pi(si, ta)} = mj(si, ti) = @(si,t;) " B; + b(si, i) a;
[a] = [(a1,...,a,)] =N(0,G ®X)
G = A(;A(T; + kel dim(Ag) =m X dp, dyp KM
= m x m rank-reduced baseline between-species correlation matrix
3= AEAQ +rel,;; dim(Ay) =¢q x d,,d, € g
= ¢ X ¢ rank-reduced community-level covariance matrix for basis functions.
Note that Cov{n;(s,t),n;(s',t')} = G;;b(s,t)" (AsAy, + ksl )b(s',t'), where G;; = 1if j = j"and A, ;Ag,; other- 44
wise



Gen 3: CBFMs?

e But why would CBFMs be faster?

Consider a set of species j = 1,...,m recorded at a set of units i = 1,..., N, where each unit has a space-time
coordinate (s;,t;). For a set of pre-defined spatio-temporal basis functions, b(s,t), a (basic) CBFM can be defined
as

g{pi(si, ta)} = mj(si, ti) = @(si,t;) " B; + b(si, i) a;
[a] = [(a1,...,a,)] =N(0,G®X)
G = A(;A(T; + kel dim(Ag) =m X dp, dyp KM
= m x m rank-reduced baseline between-species correlation matrix
3= AgA; +rel,;; dim(Ay) =¢q x d,,d, € g
= ¢ X ¢ rank-reduced community-level covariance matrix for basis functions.

Note that Cov{n;(s,t),n;(s',t')} = G;;b(s,t)" (AsAy, + ksl )b(s',t'), where G;; = 1if j = j"and A, ;Ag,; other-
wise
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Gen 3: CBFMs?

e But why would CBFMs be faster?
o Although m may not be small, N is still larger in most modern datasets

Consider a set of species j = 1,...,m recorded at a set of units i = 1,..., N, where each unit has a space-time
coordinate (s;,t;). For a set of pre-defined spatio-temporal basis functions, b(s,t), a (basic) CBFM can be defined
as

g{pi(si, ta)} = mj(si, ti) = @(si,t;) " B; + b(si, i) a;
[a] = [(a1,...,a,)] =N(0,G ®X)
G = A(;A(T; + kel dim(Ag) =m X dp, dyp KM
= m x m rank-reduced baseline between-species correlation matrix
3= AEAQ +rel,;; dim(Ay) =¢q x d,,d, € g
= ¢ X ¢ rank-reduced community-level covariance matrix for basis functions.
Note that Cov{n;(s,t),n;(s',t')} = G;;b(s,t)" (AsAy, + ksl )b(s',t'), where G;; = 1if j = j"and A, ;Ag,; other-
wise
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Gen 3: CBFMs?

Generalized Additive Models

An Introduction with R, Second Edition

™) © Searchinside

But why would CBFMs be faster?
o Although m may not be small, N is still larger in most modern datasets
o ltisjust a big generalized additive model (CAM)!

=
o e oyl S Sy Volume 70. Issue 1 Journal of
fstie :ebma'rynzqi)'ti Time Series Analysis

& Full Access n Original Article | 8 Ful
Fixed rank kriging for very large spatial data sets Spatio-temporal smoothlng and EM estimation for

Noel Cressie, Gardar johannesson [ A ] massive remote-sensing data sets
+ Add to my library 04 January y2008 " Matthias Katzfuss, Noel Cressie
0rg/10.1111/j.1467-9868.2007.00633.x | Citations: 419 First ed: 03 May 2011 | https://doi.org/10.1111/}.1467-9892.2011.00732.x
Publisher collection More by author Similar books. D fs istics, Ohio St ur ity, 1958 Neil Avent Recommended Citations: 64
Consid t of 1, d d t tof unitsi = 1,..., N, wh h unit h —ti
onsigaer a set o SpeCleS J ..... , ™ recoraed at a set or units 7 = whnere eachn uni as a Space ime

coordinate (s;,t;). For a set of pre- defined spatio-temporal basis funct|ons b(s,t), a (basic) CBFM can be defined
as

g{pi(si, ta)} = mj(si, ti) = @(si,t;) " B; + b(si, i) a;
[a] = [(a1,...,a,)] =N(0,G®X)
G = AcAl + kgly;  dim(Ag) = m X dp, d < m
= m x m rank-reduced baseline between-species correlation matrix
3= AEA—Er +rel,;; dim(Ay) =¢q x d,,d, € g
= ¢ X ¢ rank-reduced community-level covariance matrix for basis functions.

Note that Cov{n;(s,t),n;(s',t')} = G;;b(s,t)" (AsAy, + ksl )b(s',t'), where G;; = 1if j = j"and A, ;Ag,; other-
wise
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Gen 3: CBFMs?

e Basis functions are not new news

o GAMs have been known in ecology for a long time. But not so much fixed rank kriging

Home / Annual Review of Statistics and Its Application / Volume 9,2022 / Cressie

Basis-Function Models in Spatial Statistics

Annual Review of Statistics and Its Application

Vol. 9:- (Volume publication date March 2022)

Review in Advance first posted online on November 18, 2021. (Changes may still occur before final publication.)
https://doi.org/10.1146/annurev-statistics-040120-020733

Noel Cressie, Matthew Sainsbury-Dale, and Andrew Zammit-Mangion
School of Mathematics and Applied Statistics, University of Wollongong, Wollongong, New South Wales 2522, Australia; email: ncressie@uow.edu.au

A Download POF Permissions | Reprints | Download Citation | Citation Alerts

Abstract

ECOLOGY

ECOLOGICAL SOCIETY OF AMERICA

Concepts & Synthesis @ Full Access

The basis function approach for modeling
autocorrelation in ecological data

Trevor J. Hefley s Kristin M. Broms, Brian M. Brost, Frances E. Buderman, Shannon
L. Kay, Henry R. Scharf, John R. Tipton, Perry J. Williams, Mevin B. Hooten

First published:

Citations: 30

09 December 2016 | https://doi.org/10.1002/ecy.1674 |

SSCTCIE  Volume 98, Issue 3
March 2017
Pages 632-646

= & oo i ]

Figures References Related Information

Recommended
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Basis functions are not new news
GAMs have been known in ecology for a long time. But not so much fixed rank kriging

It takes a while to translate statistical methods to other disciplines (properly)...

Gs = Ag AL, + rceIn

Gr=Ac, AL, + ke, Iy

lations attributable to spatial BFs Baseline correlations attributable to temporal BFs.

Percentage

0.00

Percentage of variance explained

[ 10 20 40

Value
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&88°

Model component [ covariates ||| spatial | temporal




Gen 3: CBFMs?

e Basis functions are not new news
o GAMs have been known in ecology for a long time. But not so much fixed rank kriging
o It takes a while to translate statistical methods to other disciplines (properly)...

e IsGen 3 C Gen2+? Isn't basis functions just an approximation of spatio-temporal
LVMs?

LEMeNADE

SPoRTE DRINK D0

“Sales are up 38% since the name change.” 50



Gen 3: CBFMs?

e Basis functions are not new news
o GAMs have been known in ecology for a long time. But not so much fixed rank kriging
o It takes a while to translate statistical methods to other disciplines (properly)...

e IsGen 3 C Gen2+? Isn't basis functions just an approximation of spatio-temporal
LVMs?
o Depends on how you want to approach basis functions: “one person’s mean is
another person’s covariance” (Cressie, 1993)
o A“basis function” mindset can opens up new opportunities

Published: 26 February 2014

Finite area smoothing with generalized distance
splines

David L. Miller &7 & Simon N. Wood

Environmental and Ecological Statistics 21, 715-731 (2014) | Cite this article

696 Accesses | 14 citations | 18 Altmetric | Metrics
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Estimation, inference and all that jazz

e CBFM = Leveled up FRK = Avery big generalized additive model (CAM)
o Penalized quasi-likelihood (PQL) estimation for all coefficients, dispersion parameters;
amenable to parallelization

Let A is the m x ¢ matrix formed by stacking the a;’s as row vectors. Then given G and X, update
(Bj,a;)’s, and ¢,’s using

N m

gPQL = ZZIO {f ’ljj S;, t ,U]'(Si,ti), d)J)} — ;tr (GﬁlAEﬁlAT) .

i=1 j=1
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Multivariate abundance data

e NorthEast Fisheries Science Center (NEFSC) fall bottom trawl survey
o https://www fisheries.noaa.gov/inport/item/22560
o Subset of 2000-2019

Login ganizations Search Stats Help Guest
2 NEFSC Metadata Library > = Population and Ecosystems Monitoring and Analys... > = Ecosystems Surveys Branch > [/ Bottom Trawl Surveys > COMPLETION RUBRIC
Fall Bottom Trawl Survey 83%

Data Set (DS) | Northeast Fisheries Science Center (NEFSC) 29/35

ID: 22560 | Updated: June 28, 2021 | Published / External ills View Report

~ View As = View in Hierarchy

Short Citation: © Full Citation Examples

Northeast Fisheries Science Center, 2021: Fall Bottom Trawl Survey, https://www.fisheries.noaa.gov/inport/item/22560.

Item Identification

Title: Fall Bottom Trawl Survey

Short Name: Fall Bottom Trawl Survey

Status: Completed

Abstract: The standardized NEFSC Fall Bottom Trawl Survey was initiated in 1963 and covered an area from Hudson Canyon, NY to Nova Scotia, Canada. Throughout the years, coverage has

extended as far south as Florida and sampling depths have ranged from <27 to 366 m. Currently, the survey coverage is from Cape Hatteras, NC to Nova Scotia and the minimum depth
range is > 18 m as the result of a change in the sampling platform. This has resulted in the exclusion of many inshore strata.

Purpose: The purpose of the Fall Bottom Trawl Survey is to determine the seasonal distribution, relative abundance, and biodiversity of fish and invertebrate species found on the continental
shelf during the fall months, typically September to November. Other cruise objectives are: to collect biological samples for age determinations and growth sutidies, fecundity, maturity,
and feedlng ecology opportunlstlcal!y test trawl gear methods, or survey related equlpment that may benefit the trawl survey in the future collect oceanographlc data, inclduing CTD
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e Four example covariates in fall

Depth Seabed temp.
. Date:2000-09-01 Date: 2000-09-01
bottom trawl survey:
o There are more covariates (between -
20-30) Y [
cee 4 2
1
.|
0
0 -1
-80 -75 -70 -65 -80 -75 -70 -65 -60
Longitude Longitude
Surface temp. Stress
Date: 2000-09-01 Date: 2000-09-01
Value Value
6
2
1 4
o 2
-1 0
-80 75 70 -65 80 75 70 65 60
Longitude Longitude
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Multivariate abundance data

e Eight example demersal fish species

in fall bottom trawl survey
Around 150ish taxa in total
High-dimensional, correlated

©)
(@)
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o~
o
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Date: 2000-09-01
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. .
oA ey )
” > > -
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Longitude

75 70 -65 -60
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Multivariate abundance data

Eight example demersal fish species

in fall bottom trawl survey

o
©)
(@)
o
©)
@)

Around 150ish taxa in total
High-dimensional, correlated
responses

Some other noteworthy points:

You never visit the same location
more than once

About 6,000 space-time locations
visited between 2000-2019
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Multivariate abundance data

count

Responses are:
o Sparse, non-continuous
o Strong mean-variance relationship (various reasons behind this)
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Estimation, inference and all that jazz

e CBFM = Leveled up FRK = Avery big generalized additive model (CAM)
o Penalized quasi-likelihood (PQL) estimation for all coefficients, dispersion parameters;
amenable to parallelization
o Maximum restricted Laplace-approximated likelihood estimation for the loadings and

nugget effects

Let X and BAbe appropriately defined model matrices based on the x(s;,t;) and b(s;,t;)’s respec-
tively, and W by a diagonal matrix of weights. Then given (3;,a;)’s, and ¢,'s, update the loadings
and nugget effects characterizing G and X using

# ) 1 R .
CremL = 1 log det(G™1) + m log det(X71) — —tr (G—lAZ—lAT>
1 L R
g loadet (BT (W - W (AT W) XTW> B+G'® 2—1) .
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Estimation, inference and all that jazz

e CBFM = Leveled up FRK = Avery big generalized additive model (CAM)
o Penalized quasi-likelihood (PQL) estimation for all coefficients, dispersion parameters;

amenable to parallelization
o Maximum restricted Laplace-approximated likelihood estimation for the loadings and

nugget effects
o Approximate large sample distributions for coefficients/linear predictors etc...

8Y _ ) (B0 (XWX XTWB -
a) = ap) \BTWX BTWB+G '@ ’
where 3, and a denote the true parameter values of the regression coefficients.
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Estimation, inference and all that jazz

e CBFM = Leveled up FRK = Avery big generalized additive model (CAM)

o Penalized quasi-likelihood (PQL) estimation for all coefficients, dispersion parameters;

amenable to parallelization
o Maximum restricted Laplace-approximated likelihood estimation for the loadings and

nugget effects
o Approximate large sample distributions for coefficients/linear predictors etc...

o Adapt GAM tools for residual analysis, model selection, prediction etc...;
variance-partitioning; space-time ordination using SVD-type ideas, and so on

8Y _ ) (B0 (XWX XTWB -
a) ay)  \BTWX B WB+G'lgX! ’

where 3, and a denote the true parameter values of the regression coefficients.
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