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Introduction

Quantile Regression: Modelling various percentiles of the distributions
and thus getting a more complete picture of the set.

Bayesian Quantile Regression: framework to deal with both
parameter estimation and uncertainty quantification.

Figure: Quantile distribution of Rainfall vs Medium cloud cover for Sydney
Observatory Hill
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Why Bayesian Variable selection?

Allows us to make inferences on the dependency between potential
predictive factors on the tail, or extreme, of the response distribution
while quantifying uncertainty.

Priors : Spike and Slab, Bayesian LASSO, Adaptive Lasso ,
Horseshoe

Application : Rainfall is an aggregate of different climate phenomena

Variables : Climate Indices (Southern Oscillation Index (SOI),Dipole
Mode Index (DMI), Southern Annular Mode (SAM) and all
interactions)
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Application

Rainfall data from 1950-2021 (72 years) for Sydney Observatory Hill.

March - One of the Rainiest month

SOI : Measures El Niño and La Niña events

DMI: Measures the Indian Ocean Dipole

SAM: Measures the Southern Annular Mode
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Methodology : Model

General Model for a given site (s) and for time (t):

yt = Xtβ
q
t + ϵt

ϵt distributed as Asymmetric Laplace (ALD)

The q th regression quantile (0 < q < 1) is defined as any solution, βq, to
the quantile regression minimisation problem

min
β

∑
t

ρq(yt − Xtβ
q
t )

where the loss function ρq(u) = u(q − I (u < 0))
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Methodology : Likelihood for Bayesian Quantile Regression

ALD can be written as (Kozumi and Koabayshi (2009)),

yt = Xtβ
q
t + σθzt + στ

√
ztut

where vt = σzt , zt ∼ exp(1) and ut ∼ N(0, 1)

Likelihood can be rewritten as ,

f (y |βq, v , σ) ∝ (
T∏
t=1

(σvt)
−1
2 ) exp{−

T∑
t=1

(
yt − Xtβ

q
t − θvt)

2

2τ2σvt
}(1)
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Prior: 1). Spike and Slab prior in QR (Sampling model and
parameter space)

Xt = (1, x1, . . . , xp) and xk = (x1k , . . . , xnk)

Consists of global climate indicators, SOI, SAM, DMI and their
interactions at time t

γqkt , where, γ
q
kt = 1 if variable xk is useful in prediction yqt , at time t,

and γqkt = 0 otherwise, for k = 0, 1, . . . , p

The posterior distribution of γt

π(γt |y) =
f (yt |γt)π(γt)

f (y)

where y = (y1, . . . , yn)

Select variables that appear at least in 50% of visited models (i.e
Marginal Inclusion Probability > 0.5)

Dilani Kaveendri , Prof. Sally Cripps and Dr. Nandini Ramesh (ARC DARE Centre ) November 28, 2022 7 / 18



Prior: 1) Spike and Slab prior in QR (Sampling model and
parameter space)

Define the set A1 s.t A1 = {k ; γkt = 1} and ||A1|| = n1 and ||A0|| = n0
For each model Mγ ,

βq
A1t

|γt , σ ∼ N(0, σλ−1
k )

k = 1,.....,p and
λk ∼ Gamma(1/2, 1/2)

βq
A0t

|γt , σ ∼ δ(0)

We assume γ are i.i.d. Bernoulli (Be) (π), so that

γt |π ∼ Be(π)

π ∼ Beta(a1, a2)

σ ∼ IG(a, b), vt ∼ exp(σ)
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Prior : 2) Bayesian LASSO for QR (Estimating regression
parameters)

Laplace prior

π(βk |λ, σ) =
λ

2
√
σ
exp−λ|βk |√

σ

with λ ≥ 0

The above Laplace prior can be written in a hierarchical form,

βq ∼ N(0, σDs)

,
where Ds = diag(s21 , ...., s

2
p) and p= no of coefficient parameters.

s2k ∼ Gamma(1, λ2)

λ2 ∼ Gamma(a1, b1)
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Prior: 3) Bayesian Adaptive LASSO for QR

This is a scale mixture of normal representation of the Laplace density

π(βk |λk , σ) =
λk

2
√
σ
exp−λk |βk |√

σ
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Prior : 4) Horseshoe prior for QR

The general form of independent global-local prior takes the following
hierarchical form:

βk |λ2
k , ν

2 ∼ N(0, σλ2
kν

2)

λ2
k ∼ C+(0, 1)

ν2 ∼ C+(0, 1)
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Results

Using likelihood of the model and priors for different techniques
conditional posterior distributions are derived.

Based on posterior credible Intervals and MIPs for significance
variables selected

All methods were implemented using MCMC(Gibbs sampler) using
10,000 iterations with 2000 burn-ins in R (Without using inbuilt
packages)
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Results

Frequentist Quantile regression plot for Rainfall vs SOI,DMI and SAM
with interactions for Sydney in March at q=0.1,0.2,0.5,0.85,0.9,0.95 and
red line represent least square regression line
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Results for spike and slab prior

Table: MLEs values of regression coefficients for Sydney in March at q = 0.1, 0.5
and 0.9, Red color represent the significance variables based on 95% CI

Coefficient MLEs

0.1 0.5 0.9

soi 0.06 0.05 0.11
dmi 0.05 0.01 -0.02
sam 0.01 0.06 0.03

soi:dmi -0.04 0.05 0.15
soi:sam 0.05 0.05 0.07
dmi:sam -0.11 -0.01 0.16

soi:dmi:sam -0.03 0.15 0.26
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Table: Posterior mean and (Marginal Inclusion Probability (MIP)) of regression
coefficients for Sydney in March using Spike and slab prior QR at q = 0.1, 0.5
and 0.9

Coefficient Posterior mean and MIPs

0.1 0.5 0.9

soi 0.016 (0.369) 0.010 (0.127) 0.092 (0.655)
dmi 0.016 (0.308) 0.000 (0.053) -0.010 (0.499)
sam 0.031 (0.375) 0.009 (0.128) 0.019 (0.472)

soi:dmi -0.035 (0.436) 0.007 (0.103) 0.124 (0.747)
soi:sam 0.013 (0.311) 0.003 (0.057) 0.044 (0.480)
dmi:sam -0.091 (0.592) 0.002 (0.069) 0.147 (0.881)

soi:dmi:sam -0.015 (0.354) 0.137 (0.570) 0.234 (0.835)
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Results for Sydney in March

[a] [b]

[c] [d]

Figure: Box plots estimates for posterior iterates regression coefficients of soi,dmi,sam,
soi:dmi, soi:sam, dmi:sam, soi:dmi:sam ([a] LASSO, [b] Adaptive LASSO, [c] Horseshoe,
[d] Spike and slab), blue− > q = 0.1, orange− > 0.5 and red− > 0.9
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Conclusion

Spike and slab prior which is the ”gold standard” for variable selection
emulate with the frequentist results

Spike and slab prior can be used as generalized method to make
inferences on the significant variables and make predictions while
quantify uncertainty

Application wise it shows the importance use these methodology to
model extreme rainfall
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Future Research

Incorporating spatial dependence for spike and slab prior

To induce the spatial dependency between the impact of a global
climate indicator and rainfall quantile we place the following prior on
γqkst

Pr(γqkst = 1|zs) = πq
kt(zs)

πq
kt(zs) =

exp(gq
t (zs))

1 + exp(gq
t (zs))

where zs = (lats , lons) encodes the latitude and longitude at location
s.
We place a Gaussian Process prior over the function gq

t (.)

gq
t ∼ GP(µq

t ,Ω
q
t )

and use the reproducing kernel Hilbert space defined by a
two-dimensional thin plate Gaussian process prior to construct Ωq

t .
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