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Model based design with genetic relatedness

Aim: Improvement of design efficiency through inclusion

of genetic relatedness



Model based design with genetic relatedness

• Important to closely match the linear mixed model (LMM) underpinning the

design search with that which will be used in the proceeding analysis [4]

• Equally important to match the design with the aim of the experiment while

considering any practical constraints

• Cullis et al. (2020) [4] demonstrates the gain in accuracy in partially replicated

field trials with compared to without genetic relatedness via ancestral (pedigree)

information

• Aim is to demonstrate similar improvements in the context of molecular marker

information

• Design software; odw [2] allows for inclusion of such information in the design

process through the genomic relationship matrix (K )
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Motivating example

• Disease screening hydroponic experiment for Chickpeas (Cicer arietinum)

assessing Phytophthora root rot (PRR)

• Germplasm to be assessed (185 chickpea lines) was genotyped thus allowing for

inclusion of genetic relatedness in the model based design process

• Plot structure: 2 Tanks, each with 6 Racks and with each rack containing 56

Holes = 672 Holes

• Holes are the both the smallest unit on which an observation can be made

(observational unit) and the smallest unit to which a treatment can be applied

(experimental unit)
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PRR Hydroponic Experimental Layout
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Plant and root systems after PRR exposure



Design

• Utilise LMM with effects aligning with both genetic and non-genetic terms in the

design construction

• Genetic effects = additive effects + non-additive effects

• Non-genetic effects = Tank effects

+ Rack effects (within tanks)

+ Row effects (within racks within tanks)

+ Column effects (within racks within tanks)

• 660 (672-12) holes available, hence 660/185 = 3.57 /∈ Z
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Design process

• Two step design process

• Step 1 - Determine which lines will receive an extra replicate (lines to packets)

• Step 2 - Determine allocation of packets to holes
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Step 1: Determining Replication

• Option 1 - Randomly allocate lines to 3 or 4 replicates (packets)

• Option 2 - Determine replication based on genotyping information, that is, allow

odw to allocate lines to replication status (packets) such that genetic diversity is

maximised across the two replication groups [3]
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Step 2: Assigning lines to holes

• Option 1 - Allocate packets within the experiment assuming independence

between lines

• Option 2 - Allocate packets within the experiment such that genetic correlation

between lines is considered in the (linear mixed) model-based design
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Results

• odw utilises A-optimality as the optimality criterion, which in the context of a

comparative genetic evaluation experiment, an A-optimal design is equivalent to

minimising the average pairwise variance of all elementary treatment contrasts [1]

• We aim to quantify sub-optimality in the designs for comparison through

differences in A-values

• Namely, via evaluating the final design generated by Designs A, B and C under

the model for Design D

• Cullis et al. (2020) [4] indicates there exists a direct correlation between A-values

and response to selection gain
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Results

Design A Design B Design C Design D

A-values 0.195181 0.191557 0.193097 0.189527

Difference 0.005654 0.00203 0.00357 0

Table 1: Summary of A-values for the different designs

A - B ≈ C - D ≈ 0.0036

A - C ≈ B - D ≈ 0.002
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Results

• Difference in A-values allows for quantification of the effect of including genetic

relatedness in the design process

• Points to inclusion of markers in the final allocation as the slightly larger of the

two effects

• Effect of both markers in step 1 and step 2 appears to be additive (absence of

interaction)
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