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Motivation
This work proposed a new Conway-Maxwell-Poisson process
(CMPP) to model the replicated spatial point patterns, which
are commonly observed in practice).

Methodology
[2] defined a CMP distribution by its probability mass function

f (i) =
γ i

Z (γ, ν)(i !)ν
, i ∈+:= {0, 1, 2, . . . }, (1)

Models
We propose a class of inhomogeneous CMPP(ν, λ) by
drawing the number of points according to the pmf in (1)
with parameters γ, ν ≥ 0 ; and sampling the points
independently over W according to the pdf λ(·)/ℓ(λ).
The log-likelihood of K independent samples is [3]
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render it an
impractical way to make statistical inference.

Inferences
The method of using logistic regression for making inference
for point process [1] hinges on the Papangelou conditional
intensity π(z , {z1, . . . , zn}) of the point process, which is
given by

j({z1, . . . , zn} ∪ {z})
j({z1, . . . , zn} \ {z})
= exp

(
log(λ(z)) + (1− ν) log(n + 1{z /∈{z1,...,zn}})

)
= exp

(
θTt(z , {z1, . . . , zn}\{z})

)
,

θT = (βT , 1− ν) and t is a function.
Parameters can be estimated and inference can be made
through a logistic regression using an additional artificial
covariate with value log(1{z /∈{z1,...,zn}} + n). This can be easily
conducted using the spatstat package in the R
programming language.

Simulation Studies

Pattern Correlation

Figure: Scatter plots of the total number of individuals in two subregions W1 and W2

for the (λ, ν). The left panel shows the result for the parameters (2.51, 0.1) with positive
relation; the right panel corresponds to (1040, 10) with negative relation. The number of
replications is 500.

Simulation Study

Inhomogeneous Spatio-temporal Process
We consider a sequence of independent inhomogeneous
samples, coming from a (λ(k), ν), where λ(k)(s) depends on
a spatio-temporal covariate x (k)(s) at location
s ∈ W = [0, 1]2 according to

λ(k)(s) = exp(β0 + βx (k)(s)). (3)

Here

x (k)(s) = y(s) + cos

(
2πk

50

)
,

with y(s) the y -coordinate of location s . The true
parameter values are given by (β0, ν, β) = (1.5, 0.8, 2.5).
The results are presented in Table 1.

Table: Estimates of parameters for the inhomogeneous study.

Parameter True value Mean estimate Coverage probability

β0 1.50 1.52 0.95
ν 0.8 0.808 0.95
β 2.50 2.52 0.92

Capeweed Study
We modelled the Capeweed point pattern data (from GBIF)
between 2012 and 2018, with quasi-intensity on the k-th year
given by

λ(k)(s) = exp

[
β0 +

p∑
i=1

βiX
(k)
i (x) + γY (x)

]
, (4)

where X
(k)
1 , . . . ,X

(k)
p are environmental covariates important in

explaining the distribution of the species, and Y (x) is the
accessibility to city bias layer from bias.

Figure: Sightings of capeweed between 2012 and 2018 in South-East
Australia (in black) with those in year 2017 highlighted in green, along with
the predicted quasi-intensity in 2017.
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