# On the Conway-Maxwell-Poisson Process Model

**Ian Flint<sup>1</sup> Yan Wang <sup>2</sup> Aihua Xia <sup>1</sup>** <sup>1</sup>the University of Melbourne, Australia <sup>2</sup>RMIT University, Australia November 29, 2022

# Motivation

This work proposed a new Conway-Maxwell-Poisson process (CMPP) to model the replicated spatial point patterns, which are commonly observed in practice).

# Methodology

[2] defined a *CMP distribution* by its probability mass function

$$f(i) = \frac{\gamma'}{Z(\gamma, \nu)(i!)^{\nu}}, \quad i \in_{+} := \{0, 1, 2, \dots\},$$
(1)

### Models

We propose a class of inhomogeneous  $\text{CMPP}(\nu, \lambda)$  by drawing the number of points according to the pmf in (1) with parameters  $\gamma, \nu \geq 0$ ; and sampling the points independently over W according to the pdf  $\lambda(\cdot)/\ell(\lambda)$ . The lag likelihood of K is dependent experies in [2]

# Simulation Study

Inhomogeneous Spatio-temporal Process We consider a sequence of independent inhomogeneous samples, coming from a  $(\lambda^{(k)}, \nu)$ , where  $\lambda^{(k)}(s)$  depends on a spatio-temporal covariate  $x^{(k)}(s)$  at location  $s \in W = [0, 1]^2$  according to

$$\lambda^{(k)}(s) = \exp(\beta_0 + \beta x^{(k)}(s)). \tag{3}$$

Here

$$x^{(k)}(s) = y(s) + \cos\left(\frac{2\pi k}{50}\right),$$

with y(s) the *y*-coordinate of location *s*. The true parameter values are given by  $(\beta_0, \nu, \beta) = (1.5, 0.8, 2.5)$ . The results are presented in Table 1.

The log-likelihood of K independent samples is [3]

$$-(\nu-1)\sum_{k=1}^{K}\log(n_{k}!) - \sum_{k=1}^{K}\log(Z(\ell(\lambda^{(k)}),\nu)) + \sum_{k=1}^{K}\sum_{i=1}^{n_{k}}\log(\lambda^{(k)}(z_{i}^{(k)})).$$
(2)

The intractable constants  $\log(Z(\ell(\lambda^{(k)}), \nu))$  render it an impractical way to make statistical inference.

#### <u>Inferences</u>

The method of using logistic regression for making inference for point process [1] hinges on the Papangelou conditional intensity  $\pi(z, \{z_1, \ldots, z_n\})$  of the point process, which is given by

$$\begin{array}{l} \displaystyle \frac{j(\{z_1,\ldots,z_n\}\cup\{z\})}{j(\{z_1,\ldots,z_n\}\setminus\{z\})} \\ \displaystyle = \exp\bigl(\log(\lambda(z))+(1-\nu)\log(n+\mathbf{1}_{\{z\notin\{z_1,\ldots,z_n\}\}})\bigr) \\ \displaystyle = \exp\bigl(\boldsymbol{\theta}^{\mathsf{T}} t\bigl(z,\{z_1,\ldots,z_n\}\setminus\{z\})\bigr), \end{array}$$

 $\boldsymbol{\theta}^{\mathsf{T}} = (\boldsymbol{\beta}^{\mathsf{T}}, 1 - \nu)$  and t is a function.

Parameters can be estimated and inference can be made through a logistic regression using an additional artificial covariate with value  $\log(1_{\{z \notin \{z_1,...,z_n\}\}} + n)$ . This can be easily conducted using the **spatstat** package in the R programming language. Table: Estimates of parameters for the inhomogeneous study.

| Parameter | True value | Mean estimate | Coverage probability |
|-----------|------------|---------------|----------------------|
| $eta_{0}$ | 1.50       | 1.52          | 0.95                 |
| u         | 0.8        | 0.808         | 0.95                 |
| eta       | 2.50       | 2.52          | 0.92                 |

# Capeweed Study

We modelled the Capeweed point pattern data (from GBIF) between 2012 and 2018, with quasi-intensity on the k-th year given by

$$\lambda^{(k)}(s) = \exp\left[\beta_0 + \sum_{i=1}^p \beta_i X_i^{(k)}(x) + \gamma Y(x)\right], \qquad (4)$$

where  $X_1^{(k)}, \ldots, X_p^{(k)}$  are environmental covariates important in explaining the distribution of the species, and Y(x) is the accessibility to city bias layer from bias.

#### lambdas\_from\_fit[[5]]



### **Simulation Studies**

#### **Pattern Correlation**



Figure: Scatter plots of the total number of individuals in two subregions  $W_1$  and  $W_2$  for the  $(\lambda, \nu)$ . The left panel shows the result for the parameters (2.51, 0.1) with positive relation; the right panel corresponds to  $(10^{40}, 10)$  with negative relation. The number of replications is 500.

**Figure**: Sightings of capeweed between 2012 and 2018 in South-East Australia (in black) with those in year 2017 highlighted in green, along with the predicted quasi-intensity in 2017.

## References

 Baddeley, A., Coeurjolly, J.-F., Rubak, E. and Waagepetersen, R. (2013) Logistic regression for spatial Gibbs point processes. *Biometrika*, pp. 1–16.

[2] Conway, R. W. and Maxwell, W. L. (1962). A queuing model with state dependent service rates J. Industrial Engineering 12, 132–136.

[3] Daley, D. J. and Vere-Jones, D. (2003). An Introduction to the Theory of Point Processes: Volume I: Elementary Theory and Methods. Springer-Verlag, New York.

[4] Daly, F. and Gaunt, R. E. (2016). The Conway–Maxwell–Poisson distribution: distributional theory and approximation. ALEA Latin American Journal of Probability and Mathematical Statistics 13, 635–658.

Contact: Yan Wang, School of Science, RMIT University. Email: yan.wang@rmit.edu.au