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• The Inductive Linearisation solver (1) approximates solutions to
nonlinear systems utilising iterative linearisation to create a linear time-
varying (LTV) system and is linked to eigenvalue decomposition (EVD)
for integration.

• This method has been optimised and compared favourably to an inbuilt
differential equation solver in MATLAB (ode45) for solving non-stiff
nonlinear systems in pharmacology (2).

• Here it is explored for solving the Van der Pol system, a nonlinear
system of arbitrary stiffness.

• To evaluate the efficacy of the Inductive Linearisation solver when
applied to the stiff Van der Pol system.

• The Inductive Linearisation solver performed acceptably for both the
stiff and non-stiff Van der Pol system.

• Taking advantage of the periodicity yielded significant improvements
in performance.
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• The optimal performance for solving the whole time span (0 – 40 h)
was gained by (Table 1):

1) 𝜀 = 10𝑒 − 6 (convergence criterion), 𝑁𝑚𝑎𝑥 = 20, 𝛼 = 0.001 (non-
stiff).

2) 𝜀 = 10𝑒 − 6 (convergence criterion), 𝑁𝑚𝑎𝑥 = 60, 𝛼 = 0.03 (stiff).

Methods

• The reference ODE solvers were the MATLAB built-in functions ode45
(non-stiff) and ode23s (stiff).

• The Van der Pol system was examined for two values of the damping
parameter (𝜇 = 1, 10), denoting non-stiff and stiff.

• The second-order differential equation of Van der Pol is given:
𝑦′′ − 𝜇 1 − 𝑦2 𝑦′ + 𝑦 = 0;

Where, 𝑦′′is the second derivative, 𝑦′is the first derivative and 𝜇 is the
damping parameter.

• The function is written as a system of linearised ODEs:
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• The matrix of coefficients (K):
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• Run time and graphical precision were examined for the Inductive
Linearisation solver.

• The Inductive Linearisation solver was optimised for (as per (2))

• Convergence criterion 𝜀 for the linearisation, and

• Adaptive step-size for EVD to have the optimal step-size (𝑠𝑠)
& 𝛼.

• In addition, we can advantage of the repeating cycles of the oscillator
by optimising the inductive method for the first cycle and carrying
forward the values of 𝑦1 and 𝑦2 from the first cycle to be the plug-in
values of 𝑦0 for all future cycles. This yields a single-step linearization
process.
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• Solving the first cycle of the non-stiff and stiff system (Figures 1 & 2)
using the optimised results (from above) and using this to perform a
single step linearization yielded improved performance Table 1.
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Table 1: The speed of the optimised Inductive Linearisation solver to solve VDP

Figure 1: The periodicity for the non-stiff
VDP solution using the optimised Inductive
Linearisation solver where, 𝝁 = 𝟏 , 𝒔𝒔 =

adaptive step-size using
𝒅𝒚𝟐

𝒅𝒕
, 𝜶 = 𝟎. 𝟎𝟎𝟏.

Figure 2: The periodicity for the stiff VDP
solution using the optimised Inductive
Linearisation solver where, 𝝁 = 𝟏𝟎 , 𝒔𝒔=

adaptive step-size using
𝒅𝒚𝟐

𝒅𝒕
, 𝜶 = 𝟎. 𝟎𝟑.

Method Run time (s)

𝝁 = 𝟏

ode45 0.032

Inductive Linearisation solver for time span 0.572

Inductive linearisation solver for one cycle + one

step linearisation for subsequent cycles

0.291

𝝁 = 𝟏𝟎

ode23s 2.47

Inductive Linearisation solver for time span 5.23

Inductive linearisation solver for one cycle + one

step linearisation for subsequent cycles

2.07


