Managing and modelling multiple-response data

Thomas Lumley University of Auckland

@tslumley notstatschat.rbind.io

Multiple-response data

- Choose all that apply: what's your ethnicity, what social media do you use, what birds did you see today, what languages do you speak
- An enumerated character type
- factor/category/class is a special case

Multiple-response data

Managing:

• Read, summarise, graph, tabulate, clean, tidy

Modelling:

- Regression outcome or regression predictor
- Multivariate models for tables

Two R packages

Managing:

• rimu: responses in multiplex

Modelling:

rata: responses analysed together or apart

Tidy multiple-response data

One observation — one cell

Represent multiple responses as an S3 vector class

- Multiple responses = one observation = one element
- One question = one column in dataset

Import from any format we can manage

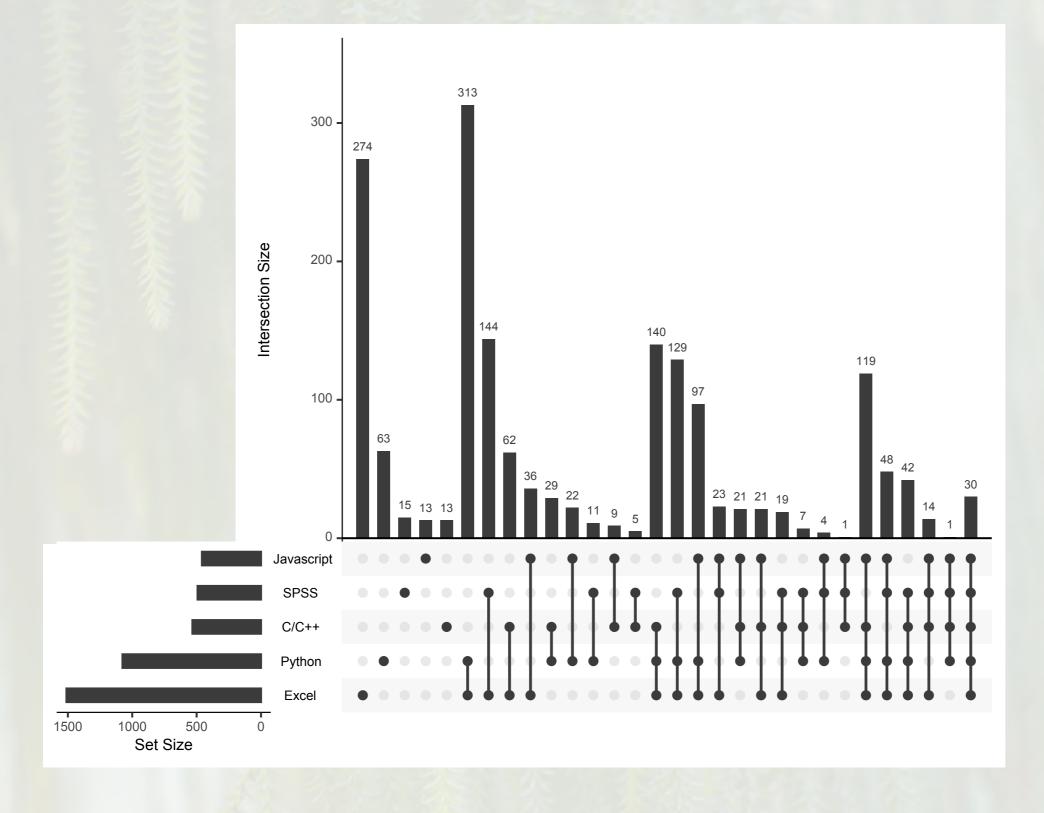
Basic verbs mostly based on forcats package: drop, union, intersection, lump, flatten, recode, reorder, count

Tidy multiple-response data

Two approaches to underlying structure

- Base R: binary presence/absence matrix (cf survival package, Genstat, SPSS)
- Tidyverse: vector of lists (using vctrs package)

- > head(other_software)
- [1] "C/C+++Python"
- [2] "Excel+Tableau"
- [3] "Excel+Tableau"
- [4] "C/C+++Excel+Go+Java+Javascript+Matlab+PHP+Python+Ruby+Visual Basic"
- [5] "Excel+Mplus+SPSS"
- [6] "Excel+Javascript+PHP+Python+scala"
- > table(other_software %hasany% c("GENSTAT","Genstat"))
 FALSE TRUE
 1836 2
- > common<-mr_lump(other_software, n=15)</pre>
- > mtable(common)


 C/C++
 Excel Go Java Javascript Matlab PHP Python Ruby SAS

 533
 1511
 47
 291
 459
 436
 176
 1076
 89
 393

 SPSS
 SQL Stata
 Tableau Visual Basic Other
 360
 403

> plot(common)

> rowpct(mtable(common, happy))

	1	2	3	4	5	
C/C++	0	1	4	23	72	
Excel	0	1	3	25	71	
Go	0	2	2	19	77	
Java	0	2	3	25	70	
Javascript	0	1	3	22	74	
Matlab	0	1	4	25	70	
PHP	0	3	3	22	71	
Python	0	1	3	23	73	
Ruby	0	2	5	20	73	
SAS	0	1	4	24	72	
SPSS	0	1	5	21	73	
SQL	0	0	0	17	83	
Stata	0	1	10	24	65	
Tableau	0	1	4	22	73	
Visual Basic	0	1	3	24	73	
Other	0	2	3	26	69	

rata

Two main strategies

- Treat it as clustered binary data for logistic regression: mrglm (Agresti & Liu)
- Treat it as clustered multinomial data: mrloglin (Loughin et al), mrmultinom

Model fitting and inference is done by the VGAM and survey packages, rata does data expansion and rearrangement.

Stacked records for each observed response

Example: where do you get your veterinary information?

mrglm(formula, data, family=binomial)

logit
$$P[Y_{ik} = 1] = \alpha_k + \sum_{h=1}^{H} \gamma_{hk} I(\text{education}_i = h)$$

Stacked records for each observed response

Example: where do you get your veterinary information?

mrglm(formula, data, family=binomial)

present(sources)~value(sources)

present(sources)~value(sources)+as.numeric(education)

present(sources)~value(sources)+education

present(sources)~value(sources)*education

Stacked records for each observed response

- Example: where do you get your veterinary information?
- mrglm(formula, data, family=binomial)

present(sources)~value(sources)

0/1

- present(sources)~value(sources)+as.numeric(education)
- present(sources)~value(sources)+education
- present(sources)~value(sources)*education

Stacked records for each observed response

Example: where do you get your veterinary information?

-actor: consultant, govt feed companies

present(sources)~value(sources)

present(sources)~value(sources)+as.numeric(education)

present(sources)~value(sources)+education

present(sources)~value(sources)*education

Level of

study

Stacked records for each observed response

Example: where do you get your veterinary information?

mrglm(formula, data, family=binomial) 0/1

Factor: consultant, govt, feed companies

present(sources)~value(sources)

present(sources)~value(sources)+as.numeric(education)

present(sources)~value(sources)+education

present(sources)~value(sources)*education

Modelling as predictor

One record: indicator variable for each level

mortality~wide(ethnicity)

Factor with stacked record for each observed level mortality~each(ethnicity)

One record: single indicator

mortality~has(ethnicity, "Maori")

github/tslumley/rimu and on CRAN

rimu

rala

github/tslumley/rata

@tslumley notstatschat.rbind.io

Photograph by Melanie Lovell-Smith, from Te Ara